InternVideo2
Collection
InternVideo2
β’
15 items
β’
Updated
β’
15
[π GitHub] [π Tech Report]
To further enrich the semantics embedded in InternVideo2 and improve its user-friendly in human communications, we tune InternVideo2 by incorporating it into a VideoLLM with a LLM and a video BLIP. We employ the progressive learning scheme in VideoChat by using InternVideo2 as the video encoder and train a video blip for communicating with open-sourced LLM. In training, the video encoder will be updated. Detailed training recipts are in VideoChat. This model has HD training.
The BaseLLM of this model is InternLM2.5-7B with 1M long context window.
Model | MVBench | VideoMME(w/o sub) |
---|---|---|
InternVideo2-Chat-8B | 60.3 | 41.9 |
InternVideo2-Chat-8B-HD | 65.4 | 46.1 |
InternVideo2-Chat-8B-HD-F16 | 67.5 | 49.4 |
InternVideo2-Chat-8B-InternLM | 61.9 | 49.1 |
transformers >= 4.38.0, peft==0.5.0
Install the requisite Python packages from pip_requirements
import os
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2_Chat_8B_InternLM2_5',
trust_remote_code=True,
use_fast=False,)
if torch.cuda.is_available():
model = AutoModel.from_pretrained(
'OpenGVLab/InternVideo2_Chat_8B_InternLM2_5',
torch_dtype=torch.bfloat16,
trust_remote_code=True).cuda()
else:
model = AutoModel.from_pretrained(
'OpenGVLab/InternVideo2_Chat_8B_InternLM2_5',
torch_dtype=torch.bfloat16,
trust_remote_code=True)
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import numpy as np
import decord
from decord import VideoReader, cpu
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms import PILToTensor
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
decord.bridge.set_bridge("torch")
def get_index(num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(video_path, num_segments=8, return_msg=False, resolution=224, hd_num=4, padding=False):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
transform = transforms.Compose([
transforms.Lambda(lambda x: x.float().div(255.0)),
transforms.Normalize(mean, std)
])
frames = vr.get_batch(frame_indices)
frames = frames.permute(0, 3, 1, 2)
if padding:
frames = HD_transform_padding(frames.float(), image_size=resolution, hd_num=hd_num)
else:
frames = HD_transform_no_padding(frames.float(), image_size=resolution, hd_num=hd_num)
frames = transform(frames)
# print(frames.shape)
T_, C, H, W = frames.shape
sub_img = frames.reshape(
1, T_, 3, H//resolution, resolution, W//resolution, resolution
).permute(0, 3, 5, 1, 2, 4, 6).reshape(-1, T_, 3, resolution, resolution).contiguous()
glb_img = F.interpolate(
frames.float(), size=(resolution, resolution), mode='bicubic', align_corners=False
).to(sub_img.dtype).unsqueeze(0)
frames = torch.cat([sub_img, glb_img]).unsqueeze(0)
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return frames, msg
else:
return frames
def HD_transform_padding(frames, image_size=224, hd_num=6):
def _padding_224(frames):
_, _, H, W = frames.shape
tar = int(np.ceil(H / 224) * 224)
top_padding = (tar - H) // 2
bottom_padding = tar - H - top_padding
left_padding = 0
right_padding = 0
padded_frames = F.pad(
frames,
pad=[left_padding, right_padding, top_padding, bottom_padding],
mode='constant', value=255
)
return padded_frames
_, _, H, W = frames.shape
trans = False
if W < H:
frames = frames.flip(-2, -1)
trans = True
width, height = H, W
else:
width, height = W, H
ratio = width / height
scale = 1
while scale * np.ceil(scale / ratio) <= hd_num:
scale += 1
scale -= 1
new_w = int(scale * image_size)
new_h = int(new_w / ratio)
resized_frames = F.interpolate(
frames, size=(new_h, new_w),
mode='bicubic',
align_corners=False
)
padded_frames = _padding_224(resized_frames)
if trans:
padded_frames = padded_frames.flip(-2, -1)
return padded_frames
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def HD_transform_no_padding(frames, image_size=224, hd_num=6, fix_ratio=(2,1)):
min_num = 1
max_num = hd_num
_, _, orig_height, orig_width = frames.shape
aspect_ratio = orig_width / orig_height
# calculate the existing video aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
if fix_ratio:
target_aspect_ratio = fix_ratio
else:
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the frames
resized_frame = F.interpolate(
frames, size=(target_height, target_width),
mode='bicubic', align_corners=False
)
return resized_frame
video_path = "yoga.mp4"
# sample uniformly 8 frames from the video
video_tensor = load_video(video_path, num_segments=8, return_msg=False, resolution=224, hd_num=6)
video_tensor = video_tensor.to(model.device)
chat_history = []
response, chat_history = model.chat(tokenizer, '', 'Describe the video step by step',instruction= "Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on your observations, select the best option that accurately addresses the question.\n", media_type='video', media_tensor=video_tensor, chat_history= chat_history, return_history=True,generation_config={'do_sample':False,'max_new_tokens':512,})
print(response)
If this work is helpful for your research, please consider citing InternVideo and VideoChat.
@article{wang2024internvideo2,
title={Internvideo2: Scaling video foundation models for multimodal video understanding},
author={Wang, Yi and Li, Kunchang and Li, Xinhao and Yu, Jiashuo and He, Yinan and Wang, Chenting and Chen, Guo and Pei, Baoqi and Zheng, Rongkun and Xu, Jilan and Wang, Zun and others},
journal={arXiv preprint arXiv:2403.15377},
year={2024}
}
@article{li2023videochat,
title={Videochat: Chat-centric video understanding},
author={Li, KunChang and He, Yinan and Wang, Yi and Li, Yizhuo and Wang, Wenhai and Luo, Ping and Wang, Yali and Wang, Limin and Qiao, Yu},
journal={arXiv preprint arXiv:2305.06355},
year={2023}
}