czczup commited on
Commit
f422190
1 Parent(s): 3dae19b

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -112,7 +112,7 @@ We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 ser
112
 
113
  We provide an example code to run InternVL2-Llama3-76B using `transformers`.
114
 
115
- We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
116
 
117
  > Please use transformers==4.37.2 to ensure the model works normally.
118
 
@@ -162,7 +162,7 @@ def split_model(model_name):
162
  device_map = {}
163
  world_size = torch.cuda.device_count()
164
  num_layers = {
165
- 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
166
  'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
167
  # Since the first GPU will be used for ViT, treat it as half a GPU.
168
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
@@ -284,7 +284,7 @@ def split_model(model_name):
284
  device_map = {}
285
  world_size = torch.cuda.device_count()
286
  num_layers = {
287
- 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
288
  'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
289
  # Since the first GPU will be used for ViT, treat it as half a GPU.
290
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
 
112
 
113
  We provide an example code to run InternVL2-Llama3-76B using `transformers`.
114
 
115
+ We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
116
 
117
  > Please use transformers==4.37.2 to ensure the model works normally.
118
 
 
162
  device_map = {}
163
  world_size = torch.cuda.device_count()
164
  num_layers = {
165
+ 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
166
  'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
167
  # Since the first GPU will be used for ViT, treat it as half a GPU.
168
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
 
284
  device_map = {}
285
  world_size = torch.cuda.device_count()
286
  num_layers = {
287
+ 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
288
  'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
289
  # Since the first GPU will be used for ViT, treat it as half a GPU.
290
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))