Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -112,10 +112,90 @@ We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 ser
|
|
112 |
|
113 |
We provide an example code to run InternVL2-Llama3-76B using `transformers`.
|
114 |
|
115 |
-
We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
|
116 |
|
117 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
```python
|
120 |
import math
|
121 |
import numpy as np
|
@@ -129,7 +209,6 @@ from transformers import AutoModel, AutoTokenizer
|
|
129 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
130 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
131 |
|
132 |
-
|
133 |
def build_transform(input_size):
|
134 |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
135 |
transform = T.Compose([
|
@@ -140,7 +219,6 @@ def build_transform(input_size):
|
|
140 |
])
|
141 |
return transform
|
142 |
|
143 |
-
|
144 |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
145 |
best_ratio_diff = float('inf')
|
146 |
best_ratio = (1, 1)
|
@@ -156,8 +234,7 @@ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_
|
|
156 |
best_ratio = ratio
|
157 |
return best_ratio
|
158 |
|
159 |
-
|
160 |
-
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
161 |
orig_width, orig_height = image.size
|
162 |
aspect_ratio = orig_width / orig_height
|
163 |
|
@@ -195,8 +272,7 @@ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnai
|
|
195 |
processed_images.append(thumbnail_img)
|
196 |
return processed_images
|
197 |
|
198 |
-
|
199 |
-
def load_image(image_file, input_size=448, max_num=6):
|
200 |
image = Image.open(image_file).convert('RGB')
|
201 |
transform = build_transform(input_size=input_size)
|
202 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
@@ -204,12 +280,12 @@ def load_image(image_file, input_size=448, max_num=6):
|
|
204 |
pixel_values = torch.stack(pixel_values)
|
205 |
return pixel_values
|
206 |
|
207 |
-
|
208 |
def split_model(model_name):
|
209 |
device_map = {}
|
210 |
world_size = torch.cuda.device_count()
|
211 |
-
num_layers = {
|
212 |
-
|
|
|
213 |
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
214 |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
215 |
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
@@ -230,12 +306,10 @@ def split_model(model_name):
|
|
230 |
|
231 |
return device_map
|
232 |
|
233 |
-
|
234 |
-
path = 'OpenGVLab/InternVL2-Llama3-76B'
|
235 |
-
device_map = split_model('InternVL2-Llama3-76B')
|
236 |
-
print(device_map)
|
237 |
# If you set `load_in_8bit=True`, you will need two 80GB GPUs.
|
238 |
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
|
|
|
|
|
239 |
model = AutoModel.from_pretrained(
|
240 |
path,
|
241 |
torch_dtype=torch.bfloat16,
|
@@ -243,63 +317,53 @@ model = AutoModel.from_pretrained(
|
|
243 |
low_cpu_mem_usage=True,
|
244 |
trust_remote_code=True,
|
245 |
device_map=device_map).eval()
|
|
|
246 |
|
247 |
-
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
248 |
# set the max number of tiles in `max_num`
|
249 |
-
pixel_values = load_image('./examples/image1.jpg', max_num=
|
250 |
-
|
251 |
-
generation_config = dict(
|
252 |
-
num_beams=1,
|
253 |
-
max_new_tokens=1024,
|
254 |
-
do_sample=False,
|
255 |
-
)
|
256 |
|
257 |
# pure-text conversation (纯文本对话)
|
258 |
question = 'Hello, who are you?'
|
259 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
260 |
-
print(f'User: {question}')
|
261 |
-
print(f'Assistant: {response}')
|
262 |
|
263 |
question = 'Can you tell me a story?'
|
264 |
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
265 |
-
print(f'User: {question}')
|
266 |
-
print(f'Assistant: {response}')
|
267 |
|
268 |
# single-image single-round conversation (单图单轮对话)
|
269 |
question = '<image>\nPlease describe the image shortly.'
|
270 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
271 |
-
print(f'User: {question}')
|
272 |
-
print(f'Assistant: {response}')
|
273 |
|
274 |
# single-image multi-round conversation (单图多轮对话)
|
275 |
question = '<image>\nPlease describe the image in detail.'
|
276 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
277 |
-
print(f'User: {question}')
|
278 |
-
print(f'Assistant: {response}')
|
279 |
|
280 |
question = 'Please write a poem according to the image.'
|
281 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
282 |
-
print(f'User: {question}')
|
283 |
-
print(f'Assistant: {response}')
|
284 |
|
285 |
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
286 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=
|
287 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=
|
288 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
289 |
|
290 |
question = '<image>\nDescribe the two images in detail.'
|
291 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
292 |
history=None, return_history=True)
|
|
|
293 |
|
294 |
question = 'What are the similarities and differences between these two images.'
|
295 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
296 |
history=history, return_history=True)
|
297 |
-
print(f'User: {question}')
|
298 |
-
print(f'Assistant: {response}')
|
299 |
|
300 |
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
301 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=
|
302 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=
|
303 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
304 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
305 |
|
@@ -307,19 +371,17 @@ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detai
|
|
307 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
308 |
num_patches_list=num_patches_list,
|
309 |
history=None, return_history=True)
|
310 |
-
print(f'User: {question}')
|
311 |
-
print(f'Assistant: {response}')
|
312 |
|
313 |
question = 'What are the similarities and differences between these two images.'
|
314 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
315 |
num_patches_list=num_patches_list,
|
316 |
history=history, return_history=True)
|
317 |
-
print(f'User: {question}')
|
318 |
-
print(f'Assistant: {response}')
|
319 |
|
320 |
# batch inference, single image per sample (单图批处理)
|
321 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=
|
322 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=
|
323 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
324 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
325 |
|
@@ -329,8 +391,7 @@ responses = model.batch_chat(tokenizer, pixel_values,
|
|
329 |
questions=questions,
|
330 |
generation_config=generation_config)
|
331 |
for question, response in zip(questions, responses):
|
332 |
-
print(f'User: {question}')
|
333 |
-
print(f'Assistant: {response}')
|
334 |
|
335 |
# video multi-round conversation (视频多轮对话)
|
336 |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
@@ -365,29 +426,23 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
|
|
365 |
pixel_values = torch.cat(pixel_values_list)
|
366 |
return pixel_values, num_patches_list
|
367 |
|
368 |
-
|
369 |
video_path = './examples/red-panda.mp4'
|
370 |
-
# pixel_values, num_patches_list = load_video(video_path, num_segments=32, max_num=1)
|
371 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
372 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
373 |
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
374 |
question = video_prefix + 'What is the red panda doing?'
|
375 |
-
# Frame1: <image>\nFrame2: <image>\n...\
|
376 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
377 |
-
num_patches_list=num_patches_list,
|
378 |
-
|
379 |
-
print(f'User: {question}')
|
380 |
-
print(f'Assistant: {response}')
|
381 |
|
382 |
question = 'Describe this video in detail. Don\'t repeat.'
|
383 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
384 |
-
num_patches_list=num_patches_list,
|
385 |
-
|
386 |
-
print(f'User: {question}')
|
387 |
-
print(f'Assistant: {response}')
|
388 |
```
|
389 |
|
390 |
-
|
391 |
|
392 |
Besides this method, you can also use the following code to get streamed output.
|
393 |
|
@@ -398,7 +453,7 @@ from threading import Thread
|
|
398 |
# Initialize the streamer
|
399 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
400 |
# Define the generation configuration
|
401 |
-
generation_config = dict(
|
402 |
# Start the model chat in a separate thread
|
403 |
thread = Thread(target=model.chat, kwargs=dict(
|
404 |
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
|
@@ -556,7 +611,7 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
556 |
|
557 |
我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-Llama3-76B。
|
558 |
|
559 |
-
我们也欢迎你在我们的[在线demo](https://internvl.opengvlab.com/)中体验InternVL2
|
560 |
|
561 |
> 请使用 transformers==4.37.2 以确保模型正常运行。
|
562 |
|
|
|
112 |
|
113 |
We provide an example code to run InternVL2-Llama3-76B using `transformers`.
|
114 |
|
115 |
+
We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
|
116 |
|
117 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
118 |
|
119 |
+
### Model Loading
|
120 |
+
|
121 |
+
#### 16-bit (bf16 / fp16)
|
122 |
+
|
123 |
+
```python
|
124 |
+
import torch
|
125 |
+
from transformers import AutoTokenizer, AutoModel
|
126 |
+
path = "OpenGVLab/InternVL2-Llama3-76B"
|
127 |
+
model = AutoModel.from_pretrained(
|
128 |
+
path,
|
129 |
+
torch_dtype=torch.bfloat16,
|
130 |
+
low_cpu_mem_usage=True,
|
131 |
+
trust_remote_code=True).eval().cuda()
|
132 |
+
```
|
133 |
+
|
134 |
+
#### BNB 8-bit Quantization
|
135 |
+
|
136 |
+
```python
|
137 |
+
import torch
|
138 |
+
from transformers import AutoTokenizer, AutoModel
|
139 |
+
path = "OpenGVLab/InternVL2-Llama3-76B"
|
140 |
+
model = AutoModel.from_pretrained(
|
141 |
+
path,
|
142 |
+
torch_dtype=torch.bfloat16,
|
143 |
+
load_in_8bit=True,
|
144 |
+
low_cpu_mem_usage=True,
|
145 |
+
trust_remote_code=True).eval()
|
146 |
+
```
|
147 |
+
|
148 |
+
#### BNB 4-bit Quantization
|
149 |
+
|
150 |
+
> **⚠️ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization.
|
151 |
+
|
152 |
+
#### Multiple GPUs
|
153 |
+
|
154 |
+
The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
|
155 |
+
|
156 |
+
```python
|
157 |
+
import math
|
158 |
+
import torch
|
159 |
+
from transformers import AutoTokenizer, AutoModel
|
160 |
+
|
161 |
+
def split_model(model_name):
|
162 |
+
device_map = {}
|
163 |
+
world_size = torch.cuda.device_count()
|
164 |
+
num_layers = {
|
165 |
+
'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
|
166 |
+
'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
|
167 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
168 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
169 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
170 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
171 |
+
layer_cnt = 0
|
172 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
173 |
+
for j in range(num_layer):
|
174 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
175 |
+
layer_cnt += 1
|
176 |
+
device_map['vision_model'] = 0
|
177 |
+
device_map['mlp1'] = 0
|
178 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
179 |
+
device_map['language_model.model.embed_tokens'] = 0
|
180 |
+
device_map['language_model.output'] = 0
|
181 |
+
device_map['language_model.model.norm'] = 0
|
182 |
+
device_map['language_model.lm_head'] = 0
|
183 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
184 |
+
|
185 |
+
return device_map
|
186 |
+
|
187 |
+
path = "OpenGVLab/InternVL2-Llama3-76B"
|
188 |
+
device_map = split_model('InternVL2-Llama3-76B')
|
189 |
+
model = AutoModel.from_pretrained(
|
190 |
+
path,
|
191 |
+
torch_dtype=torch.bfloat16,
|
192 |
+
low_cpu_mem_usage=True,
|
193 |
+
trust_remote_code=True,
|
194 |
+
device_map=device_map).eval()
|
195 |
+
```
|
196 |
+
|
197 |
+
### Inference with Transformers
|
198 |
+
|
199 |
```python
|
200 |
import math
|
201 |
import numpy as np
|
|
|
209 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
210 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
211 |
|
|
|
212 |
def build_transform(input_size):
|
213 |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
214 |
transform = T.Compose([
|
|
|
219 |
])
|
220 |
return transform
|
221 |
|
|
|
222 |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
223 |
best_ratio_diff = float('inf')
|
224 |
best_ratio = (1, 1)
|
|
|
234 |
best_ratio = ratio
|
235 |
return best_ratio
|
236 |
|
237 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
|
|
238 |
orig_width, orig_height = image.size
|
239 |
aspect_ratio = orig_width / orig_height
|
240 |
|
|
|
272 |
processed_images.append(thumbnail_img)
|
273 |
return processed_images
|
274 |
|
275 |
+
def load_image(image_file, input_size=448, max_num=12):
|
|
|
276 |
image = Image.open(image_file).convert('RGB')
|
277 |
transform = build_transform(input_size=input_size)
|
278 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
|
|
280 |
pixel_values = torch.stack(pixel_values)
|
281 |
return pixel_values
|
282 |
|
|
|
283 |
def split_model(model_name):
|
284 |
device_map = {}
|
285 |
world_size = torch.cuda.device_count()
|
286 |
+
num_layers = {
|
287 |
+
'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
|
288 |
+
'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
|
289 |
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
290 |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
291 |
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
|
|
306 |
|
307 |
return device_map
|
308 |
|
|
|
|
|
|
|
|
|
309 |
# If you set `load_in_8bit=True`, you will need two 80GB GPUs.
|
310 |
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
|
311 |
+
path = 'OpenGVLab/InternVL2-Llama3-76B'
|
312 |
+
device_map = split_model('InternVL2-Llama3-76B')
|
313 |
model = AutoModel.from_pretrained(
|
314 |
path,
|
315 |
torch_dtype=torch.bfloat16,
|
|
|
317 |
low_cpu_mem_usage=True,
|
318 |
trust_remote_code=True,
|
319 |
device_map=device_map).eval()
|
320 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
321 |
|
|
|
322 |
# set the max number of tiles in `max_num`
|
323 |
+
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
324 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False)
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
# pure-text conversation (纯文本对话)
|
327 |
question = 'Hello, who are you?'
|
328 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
329 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
330 |
|
331 |
question = 'Can you tell me a story?'
|
332 |
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
333 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
334 |
|
335 |
# single-image single-round conversation (单图单轮对话)
|
336 |
question = '<image>\nPlease describe the image shortly.'
|
337 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
338 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
339 |
|
340 |
# single-image multi-round conversation (单图多轮对话)
|
341 |
question = '<image>\nPlease describe the image in detail.'
|
342 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
343 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
344 |
|
345 |
question = 'Please write a poem according to the image.'
|
346 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
347 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
348 |
|
349 |
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
350 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
351 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
352 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
353 |
|
354 |
question = '<image>\nDescribe the two images in detail.'
|
355 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
356 |
history=None, return_history=True)
|
357 |
+
print(f'User: {question}\nAssistant: {response}')
|
358 |
|
359 |
question = 'What are the similarities and differences between these two images.'
|
360 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
361 |
history=history, return_history=True)
|
362 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
363 |
|
364 |
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
365 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
366 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
367 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
368 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
369 |
|
|
|
371 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
372 |
num_patches_list=num_patches_list,
|
373 |
history=None, return_history=True)
|
374 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
375 |
|
376 |
question = 'What are the similarities and differences between these two images.'
|
377 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
378 |
num_patches_list=num_patches_list,
|
379 |
history=history, return_history=True)
|
380 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
381 |
|
382 |
# batch inference, single image per sample (单图批处理)
|
383 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
384 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
385 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
386 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
387 |
|
|
|
391 |
questions=questions,
|
392 |
generation_config=generation_config)
|
393 |
for question, response in zip(questions, responses):
|
394 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
395 |
|
396 |
# video multi-round conversation (视频多轮对话)
|
397 |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
|
|
426 |
pixel_values = torch.cat(pixel_values_list)
|
427 |
return pixel_values, num_patches_list
|
428 |
|
|
|
429 |
video_path = './examples/red-panda.mp4'
|
|
|
430 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
431 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
432 |
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
433 |
question = video_prefix + 'What is the red panda doing?'
|
434 |
+
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
|
435 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
436 |
+
num_patches_list=num_patches_list, history=None, return_history=True)
|
437 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
|
|
438 |
|
439 |
question = 'Describe this video in detail. Don\'t repeat.'
|
440 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
441 |
+
num_patches_list=num_patches_list, history=history, return_history=True)
|
442 |
+
print(f'User: {question}\nAssistant: {response}')
|
|
|
|
|
443 |
```
|
444 |
|
445 |
+
#### Streaming output
|
446 |
|
447 |
Besides this method, you can also use the following code to get streamed output.
|
448 |
|
|
|
453 |
# Initialize the streamer
|
454 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
455 |
# Define the generation configuration
|
456 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
|
457 |
# Start the model chat in a separate thread
|
458 |
thread = Thread(target=model.chat, kwargs=dict(
|
459 |
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
|
|
|
611 |
|
612 |
我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-Llama3-76B。
|
613 |
|
614 |
+
我们也欢迎你在我们的[在线demo](https://internvl.opengvlab.com/)中体验InternVL2的系列模型。
|
615 |
|
616 |
> 请使用 transformers==4.37.2 以确保模型正常运行。
|
617 |
|