Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -60,7 +60,7 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
|
|
60 |
| SEED-Image | 77.1 | - | 78.2 | 78.2 |
|
61 |
| HallBench<sub>avg</sub> | 55.0 | 49.9 | 56.9 | 55.2 |
|
62 |
| MathVista<sub>testmini</sub> | 63.8 | 67.7 | 63.7 | 65.5 |
|
63 |
-
| OpenCompass<sub>avg</sub> | 69.9 | 67.9 | 69.7 | 71.0
|
64 |
|
65 |
- We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
|
66 |
|
@@ -82,8 +82,32 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
|
|
82 |
|
83 |
- We evaluate our models on MVBench and Video-MME by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
|
86 |
|
|
|
|
|
|
|
|
|
87 |
## Quick Start
|
88 |
|
89 |
We provide an example code to run InternVL2-Llama3-76B using `transformers`.
|
@@ -480,7 +504,7 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
480 |
| SEED-Image | 77.1 | - | 78.2 | 78.2 |
|
481 |
| HallBench<sub>avg</sub> | 55.0 | 49.9 | 56.9 | 55.2 |
|
482 |
| MathVista<sub>testmini</sub> | 63.8 | 67.7 | 63.7 | 65.5 |
|
483 |
-
| OpenCompass<sub>avg</sub> | 69.9 | 67.9 | 69.7 | 71.0
|
484 |
|
485 |
- 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
|
486 |
|
@@ -502,8 +526,32 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
502 |
|
503 |
- 我们通过从每个视频中提取 16 帧来评估我们的模型在 MVBench 和 Video-MME 上的性能,每个视频帧被调整为 448x448 的图像。
|
504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
限制:尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符���伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
506 |
|
|
|
|
|
|
|
|
|
507 |
## 快速启动
|
508 |
|
509 |
我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-Llama3-76B。
|
|
|
60 |
| SEED-Image | 77.1 | - | 78.2 | 78.2 |
|
61 |
| HallBench<sub>avg</sub> | 55.0 | 49.9 | 56.9 | 55.2 |
|
62 |
| MathVista<sub>testmini</sub> | 63.8 | 67.7 | 63.7 | 65.5 |
|
63 |
+
| OpenCompass<sub>avg</sub> | 69.9 | 67.9 | 69.7 | 71.0 |
|
64 |
|
65 |
- We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
|
66 |
|
|
|
82 |
|
83 |
- We evaluate our models on MVBench and Video-MME by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
|
84 |
|
85 |
+
### Grounding Benchmarks
|
86 |
+
|
87 |
+
| Model | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
|
88 |
+
| :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
|
89 |
+
| UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
|
90 |
+
| | | | | | | | | | |
|
91 |
+
| Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
|
92 |
+
| Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
|
93 |
+
| InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
|
94 |
+
| | | | | | | | | | |
|
95 |
+
| InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
|
96 |
+
| InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
|
97 |
+
| InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
|
98 |
+
| InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
|
99 |
+
| InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
|
100 |
+
| InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
|
101 |
+
| InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
|
102 |
+
|
103 |
+
- We use the following prompt to evaluate InternVL's grounding ability: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
|
104 |
+
|
105 |
Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
|
106 |
|
107 |
+
### Invitation to Evaluate InternVL
|
108 |
+
|
109 |
+
We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 series models. If you need to add your evaluation results here, please contact me at [[email protected]](mailto:[email protected]).
|
110 |
+
|
111 |
## Quick Start
|
112 |
|
113 |
We provide an example code to run InternVL2-Llama3-76B using `transformers`.
|
|
|
504 |
| SEED-Image | 77.1 | - | 78.2 | 78.2 |
|
505 |
| HallBench<sub>avg</sub> | 55.0 | 49.9 | 56.9 | 55.2 |
|
506 |
| MathVista<sub>testmini</sub> | 63.8 | 67.7 | 63.7 | 65.5 |
|
507 |
+
| OpenCompass<sub>avg</sub> | 69.9 | 67.9 | 69.7 | 71.0 |
|
508 |
|
509 |
- 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
|
510 |
|
|
|
526 |
|
527 |
- 我们通过从每个视频中提取 16 帧来评估我们的模型在 MVBench 和 Video-MME 上的性能,每个视频帧被调整为 448x448 的图像。
|
528 |
|
529 |
+
### 定位相关评测
|
530 |
+
|
531 |
+
| 模型 | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
|
532 |
+
| :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
|
533 |
+
| UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
|
534 |
+
| | | | | | | | | | |
|
535 |
+
| Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
|
536 |
+
| Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
|
537 |
+
| InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
|
538 |
+
| | | | | | | | | | |
|
539 |
+
| InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
|
540 |
+
| InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
|
541 |
+
| InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
|
542 |
+
| InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
|
543 |
+
| InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
|
544 |
+
| InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
|
545 |
+
| InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
|
546 |
+
|
547 |
+
- 我们使用以下 Prompt 来评测 InternVL 的 Grounding 能力: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
|
548 |
+
|
549 |
限制:尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符���伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
550 |
|
551 |
+
### 邀请评测 InternVL
|
552 |
+
|
553 |
+
我们欢迎各位 MLLM benchmark 的开发者对我们的 InternVL1.5 以及 InternVL2 系列模型进行评测。如果需要在此处添加评测结果,请与我联系([[email protected]](mailto:[email protected]))。
|
554 |
+
|
555 |
## 快速启动
|
556 |
|
557 |
我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-Llama3-76B。
|