|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from shutil import copyfile |
|
from typing import Optional, Tuple, Union, List |
|
import re |
|
import codecs |
|
|
|
from tokenizers import processors |
|
|
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
from transformers.utils import is_sentencepiece_available, logging |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
require_version("tokenizers>=0.13.3") |
|
|
|
if is_sentencepiece_available(): |
|
from transformers.models.llama.tokenization_llama import LlamaTokenizer |
|
else: |
|
LlamaTokenizer = None |
|
|
|
logger = logging.get_logger(__name__) |
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model", |
|
}, |
|
"tokenizer_file": { |
|
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json", |
|
}, |
|
} |
|
B_INST, E_INST = "[INST]", "[/INST]" |
|
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" |
|
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ |
|
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ |
|
that your responses are socially unbiased and positive in nature. |
|
|
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ |
|
correct. If you don't know the answer to a question, please don't share false information.""" |
|
|
|
|
|
|
|
class LlamaTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. |
|
|
|
This uses notably ByteFallback and no normalization. |
|
|
|
```python |
|
>>> from transformers import LlamaTokenizerFast |
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") |
|
>>> tokenizer.encode("Hello this is a test") |
|
[1, 15043, 445, 338, 263, 1243] |
|
``` |
|
|
|
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or |
|
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the |
|
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout |
|
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. |
|
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`, *optional*): |
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that |
|
contains the vocabulary necessary to instantiate a tokenizer. |
|
tokenizer_file (`str`, *optional*): |
|
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that |
|
contains everything needed to load the tokenizer. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like |
|
extra spaces. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of sequences. |
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of sequences. |
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`): |
|
Whether or not the default system prompt for Llama should be used. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
slow_tokenizer_class = LlamaTokenizer |
|
padding_side = "left" |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
tokenizer_file=None, |
|
clean_up_tokenization_spaces=False, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
use_default_system_prompt=False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
vocab_file=vocab_file, |
|
tokenizer_file=tokenizer_file, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
use_default_system_prompt=use_default_system_prompt, |
|
**kwargs, |
|
) |
|
self._add_bos_token = add_bos_token |
|
self._add_eos_token = add_eos_token |
|
self.update_post_processor() |
|
self.use_default_system_prompt = use_default_system_prompt |
|
self.vocab_file = vocab_file |
|
|
|
@property |
|
def can_save_slow_tokenizer(self) -> bool: |
|
return os.path.isfile(self.vocab_file) if self.vocab_file else False |
|
|
|
def update_post_processor(self): |
|
""" |
|
Updates the underlying post processor with the current `bos_token` and `eos_token`. |
|
""" |
|
bos = self.bos_token |
|
bos_token_id = self.bos_token_id |
|
if bos is None and self.add_bos_token: |
|
raise ValueError("add_bos_token = True but bos_token = None") |
|
|
|
eos = self.eos_token |
|
eos_token_id = self.eos_token_id |
|
if eos is None and self.add_eos_token: |
|
raise ValueError("add_eos_token = True but eos_token = None") |
|
|
|
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" |
|
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" |
|
|
|
special_tokens = [] |
|
if self.add_bos_token: |
|
special_tokens.append((bos, bos_token_id)) |
|
if self.add_eos_token: |
|
special_tokens.append((eos, eos_token_id)) |
|
self._tokenizer.post_processor = processors.TemplateProcessing( |
|
single=single, pair=pair, special_tokens=special_tokens |
|
) |
|
|
|
@property |
|
def add_eos_token(self): |
|
return self._add_eos_token |
|
|
|
@property |
|
def add_bos_token(self): |
|
return self._add_bos_token |
|
|
|
@add_eos_token.setter |
|
def add_eos_token(self, value): |
|
self._add_eos_token = value |
|
self.update_post_processor() |
|
|
|
@add_bos_token.setter |
|
def add_bos_token(self, value): |
|
self._add_bos_token = value |
|
self.update_post_processor() |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not self.can_save_slow_tokenizer: |
|
raise ValueError( |
|
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " |
|
"tokenizer." |
|
) |
|
|
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
|
|
return (out_vocab_file,) |
|
|
|
@property |
|
|
|
def default_chat_template(self): |
|
""" |
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. |
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict |
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering |
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which |
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish |
|
to fine-tune a model with more flexible role ordering! |
|
|
|
The output should look something like: |
|
|
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> |
|
<bos>[INST] Prompt [/INST] |
|
|
|
The reference for this chat template is [this code |
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) |
|
in the original repository. |
|
""" |
|
logger.warning_once( |
|
"\nNo chat template is defined for this tokenizer - using the default template " |
|
f"for the {self.__class__.__name__} class. If the default is not appropriate for " |
|
"your model, please set `tokenizer.chat_template` to an appropriate template. " |
|
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" |
|
) |
|
template = ( |
|
"{% if messages[0]['role'] == 'system' %}" |
|
"{% set loop_messages = messages[1:] %}" |
|
"{% set system_message = messages[0]['content'] %}" |
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" |
|
"{% else %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = false %}" |
|
"{% endif %}" |
|
"{% for message in loop_messages %}" |
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" |
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" |
|
"{% endif %}" |
|
"{% if loop.index0 == 0 and system_message != false %}" |
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" |
|
"{% else %}" |
|
"{% set content = message['content'] %}" |
|
"{% endif %}" |
|
"{% if message['role'] == 'user' %}" |
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" |
|
"{% elif message['role'] == 'system' %}" |
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" |
|
"{% elif message['role'] == 'assistant' %}" |
|
"{{ ' ' + content.strip() + ' ' + eos_token }}" |
|
"{% endif %}" |
|
"{% endfor %}" |
|
) |
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") |
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") |
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) |
|
|
|
return template |
|
|
|
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def decode_hex_in_sentence(self,sentence): |
|
|
|
hex_pattern = re.compile(r'<0x([0-9A-Fa-f]+)>') |
|
|
|
|
|
matches = re.finditer(hex_pattern, sentence) |
|
|
|
|
|
for match in matches: |
|
hex_string = match.group(1) |
|
bytes_data = bytes.fromhex(hex_string) |
|
try: |
|
decoded_string = bytes_data.decode('utf-8') |
|
except UnicodeDecodeError: |
|
continue |
|
sentence = sentence.replace(match.group(0), decoded_string, 1) |
|
|
|
return sentence |
|
|
|
def convert_emojis(self,input_string): |
|
|
|
hex_sequences = re.findall(r'<0x([A-Fa-f0-9]+)>', input_string) |
|
|
|
input_string = bytes(input_string,'utf-8') |
|
|
|
|
|
for hex_seq in hex_sequences: |
|
bytes_value = bytes.fromhex(hex_seq) |
|
input_string = input_string.replace(bytes(f"<0x{hex_seq}>",'utf-8'), bytes_value) |
|
|
|
decoded_str = codecs.decode(input_string, 'utf-8') |
|
|
|
return decoded_str |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> str: |
|
|
|
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) |
|
|
|
if isinstance(token_ids, int): |
|
token_ids = [token_ids] |
|
|
|
|
|
tokens = self.convert_ids_to_tokens(token_ids) |
|
text = "" |
|
i = 0 |
|
for id,token in zip(token_ids,tokens): |
|
if skip_special_tokens and id in self.all_special_ids: |
|
continue |
|
|
|
if id>=32000 and i!= 0: |
|
text += " " + token |
|
else: |
|
text += token |
|
i += 1 |
|
text = re.sub("▁"," ",text) |
|
text = self.decode_hex_in_sentence(text) |
|
text = self.convert_emojis(text) |
|
text = text.lstrip().rstrip() |
|
|
|
clean_up_tokenization_spaces = ( |
|
clean_up_tokenization_spaces |
|
if clean_up_tokenization_spaces is not None |
|
else self.clean_up_tokenization_spaces |
|
) |
|
if clean_up_tokenization_spaces: |
|
clean_text = self.clean_up_tokenization(text) |
|
return clean_text |
|
else: |
|
return text |
|
|