Upload bahasallamatokenizer.py
Browse files- bahasallamatokenizer.py +359 -0
bahasallamatokenizer.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import os
|
16 |
+
from shutil import copyfile
|
17 |
+
from typing import Optional, Tuple, Union, List
|
18 |
+
import re
|
19 |
+
import codecs
|
20 |
+
|
21 |
+
from tokenizers import processors
|
22 |
+
|
23 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from transformers.utils import is_sentencepiece_available, logging
|
25 |
+
from transformers.utils.versions import require_version
|
26 |
+
|
27 |
+
|
28 |
+
require_version("tokenizers>=0.13.3")
|
29 |
+
|
30 |
+
if is_sentencepiece_available():
|
31 |
+
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
32 |
+
else:
|
33 |
+
LlamaTokenizer = None
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
|
37 |
+
|
38 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
39 |
+
"vocab_file": {
|
40 |
+
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
|
41 |
+
},
|
42 |
+
"tokenizer_file": {
|
43 |
+
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
|
44 |
+
},
|
45 |
+
}
|
46 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
47 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
48 |
+
|
49 |
+
# fmt: off
|
50 |
+
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
51 |
+
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
52 |
+
that your responses are socially unbiased and positive in nature.
|
53 |
+
|
54 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
55 |
+
correct. If you don't know the answer to a question, please don't share false information."""
|
56 |
+
# fmt: on
|
57 |
+
|
58 |
+
|
59 |
+
class LlamaTokenizerFast(PreTrainedTokenizerFast):
|
60 |
+
"""
|
61 |
+
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
|
62 |
+
|
63 |
+
This uses notably ByteFallback and no normalization.
|
64 |
+
|
65 |
+
```python
|
66 |
+
>>> from transformers import LlamaTokenizerFast
|
67 |
+
|
68 |
+
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
69 |
+
>>> tokenizer.encode("Hello this is a test")
|
70 |
+
[1, 15043, 445, 338, 263, 1243]
|
71 |
+
```
|
72 |
+
|
73 |
+
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
|
74 |
+
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
|
75 |
+
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
|
76 |
+
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
|
77 |
+
|
78 |
+
|
79 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
80 |
+
refer to this superclass for more information regarding those methods.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
vocab_file (`str`, *optional*):
|
84 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
|
85 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
86 |
+
tokenizer_file (`str`, *optional*):
|
87 |
+
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
88 |
+
contains everything needed to load the tokenizer.
|
89 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
90 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
91 |
+
extra spaces.
|
92 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
93 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
94 |
+
token instead.
|
95 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
96 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
97 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
98 |
+
The end of sequence token.
|
99 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
100 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
101 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
103 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
104 |
+
Whether or not the default system prompt for Llama should be used.
|
105 |
+
"""
|
106 |
+
|
107 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
108 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
109 |
+
slow_tokenizer_class = LlamaTokenizer
|
110 |
+
padding_side = "left"
|
111 |
+
model_input_names = ["input_ids", "attention_mask"]
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_file=None,
|
116 |
+
tokenizer_file=None,
|
117 |
+
clean_up_tokenization_spaces=False,
|
118 |
+
unk_token="<unk>",
|
119 |
+
bos_token="<s>",
|
120 |
+
eos_token="</s>",
|
121 |
+
add_bos_token=True,
|
122 |
+
add_eos_token=False,
|
123 |
+
use_default_system_prompt=False,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
super().__init__(
|
127 |
+
vocab_file=vocab_file,
|
128 |
+
tokenizer_file=tokenizer_file,
|
129 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
130 |
+
unk_token=unk_token,
|
131 |
+
bos_token=bos_token,
|
132 |
+
eos_token=eos_token,
|
133 |
+
add_bos_token=add_bos_token,
|
134 |
+
add_eos_token=add_eos_token,
|
135 |
+
use_default_system_prompt=use_default_system_prompt,
|
136 |
+
**kwargs,
|
137 |
+
)
|
138 |
+
self._add_bos_token = add_bos_token
|
139 |
+
self._add_eos_token = add_eos_token
|
140 |
+
self.update_post_processor()
|
141 |
+
self.use_default_system_prompt = use_default_system_prompt
|
142 |
+
self.vocab_file = vocab_file
|
143 |
+
|
144 |
+
@property
|
145 |
+
def can_save_slow_tokenizer(self) -> bool:
|
146 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
147 |
+
|
148 |
+
def update_post_processor(self):
|
149 |
+
"""
|
150 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
151 |
+
"""
|
152 |
+
bos = self.bos_token
|
153 |
+
bos_token_id = self.bos_token_id
|
154 |
+
if bos is None and self.add_bos_token:
|
155 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
156 |
+
|
157 |
+
eos = self.eos_token
|
158 |
+
eos_token_id = self.eos_token_id
|
159 |
+
if eos is None and self.add_eos_token:
|
160 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
161 |
+
|
162 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
163 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
164 |
+
|
165 |
+
special_tokens = []
|
166 |
+
if self.add_bos_token:
|
167 |
+
special_tokens.append((bos, bos_token_id))
|
168 |
+
if self.add_eos_token:
|
169 |
+
special_tokens.append((eos, eos_token_id))
|
170 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
171 |
+
single=single, pair=pair, special_tokens=special_tokens
|
172 |
+
)
|
173 |
+
|
174 |
+
@property
|
175 |
+
def add_eos_token(self):
|
176 |
+
return self._add_eos_token
|
177 |
+
|
178 |
+
@property
|
179 |
+
def add_bos_token(self):
|
180 |
+
return self._add_bos_token
|
181 |
+
|
182 |
+
@add_eos_token.setter
|
183 |
+
def add_eos_token(self, value):
|
184 |
+
self._add_eos_token = value
|
185 |
+
self.update_post_processor()
|
186 |
+
|
187 |
+
@add_bos_token.setter
|
188 |
+
def add_bos_token(self, value):
|
189 |
+
self._add_bos_token = value
|
190 |
+
self.update_post_processor()
|
191 |
+
|
192 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
193 |
+
if not self.can_save_slow_tokenizer:
|
194 |
+
raise ValueError(
|
195 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
196 |
+
"tokenizer."
|
197 |
+
)
|
198 |
+
|
199 |
+
if not os.path.isdir(save_directory):
|
200 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
201 |
+
return
|
202 |
+
out_vocab_file = os.path.join(
|
203 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
204 |
+
)
|
205 |
+
|
206 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
207 |
+
copyfile(self.vocab_file, out_vocab_file)
|
208 |
+
|
209 |
+
return (out_vocab_file,)
|
210 |
+
|
211 |
+
@property
|
212 |
+
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template
|
213 |
+
def default_chat_template(self):
|
214 |
+
"""
|
215 |
+
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
|
216 |
+
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
|
217 |
+
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
|
218 |
+
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
|
219 |
+
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
|
220 |
+
to fine-tune a model with more flexible role ordering!
|
221 |
+
|
222 |
+
The output should look something like:
|
223 |
+
|
224 |
+
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
|
225 |
+
<bos>[INST] Prompt [/INST]
|
226 |
+
|
227 |
+
The reference for this chat template is [this code
|
228 |
+
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
|
229 |
+
in the original repository.
|
230 |
+
"""
|
231 |
+
logger.warning_once(
|
232 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
233 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
234 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
235 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
236 |
+
)
|
237 |
+
template = (
|
238 |
+
"{% if messages[0]['role'] == 'system' %}"
|
239 |
+
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present
|
240 |
+
"{% set system_message = messages[0]['content'] %}"
|
241 |
+
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
|
242 |
+
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set
|
243 |
+
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
|
244 |
+
"{% else %}"
|
245 |
+
"{% set loop_messages = messages %}"
|
246 |
+
"{% set system_message = false %}"
|
247 |
+
"{% endif %}"
|
248 |
+
"{% for message in loop_messages %}" # Loop over all non-system messages
|
249 |
+
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
|
250 |
+
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
|
251 |
+
"{% endif %}"
|
252 |
+
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
|
253 |
+
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
|
254 |
+
"{% else %}"
|
255 |
+
"{% set content = message['content'] %}"
|
256 |
+
"{% endif %}"
|
257 |
+
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
|
258 |
+
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
|
259 |
+
"{% elif message['role'] == 'system' %}"
|
260 |
+
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
|
261 |
+
"{% elif message['role'] == 'assistant' %}"
|
262 |
+
"{{ ' ' + content.strip() + ' ' + eos_token }}"
|
263 |
+
"{% endif %}"
|
264 |
+
"{% endfor %}"
|
265 |
+
)
|
266 |
+
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
|
267 |
+
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
|
268 |
+
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
|
269 |
+
|
270 |
+
return template
|
271 |
+
|
272 |
+
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
|
273 |
+
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
|
274 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
275 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
276 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
277 |
+
|
278 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
279 |
+
|
280 |
+
if token_ids_1 is not None:
|
281 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
282 |
+
|
283 |
+
return output
|
284 |
+
|
285 |
+
def decode_hex_in_sentence(self,sentence):
|
286 |
+
# Define a regular expression to match hexadecimal representations
|
287 |
+
hex_pattern = re.compile(r'<0x([0-9A-Fa-f]+)>')
|
288 |
+
|
289 |
+
# Find all matches in the sentence
|
290 |
+
matches = re.finditer(hex_pattern, sentence)
|
291 |
+
|
292 |
+
# Iterate over matches and replace them with their decoded values
|
293 |
+
for match in matches:
|
294 |
+
hex_string = match.group(1)
|
295 |
+
bytes_data = bytes.fromhex(hex_string)
|
296 |
+
try:
|
297 |
+
decoded_string = bytes_data.decode('utf-8')
|
298 |
+
except UnicodeDecodeError:
|
299 |
+
continue
|
300 |
+
sentence = sentence.replace(match.group(0), decoded_string, 1)
|
301 |
+
|
302 |
+
return sentence
|
303 |
+
|
304 |
+
def convert_emojis(self,input_string):
|
305 |
+
# Find all hexadecimal escape sequences in the input string
|
306 |
+
hex_sequences = re.findall(r'<0x([A-Fa-f0-9]+)>', input_string)
|
307 |
+
|
308 |
+
input_string = bytes(input_string,'utf-8')
|
309 |
+
|
310 |
+
# Replace each escape sequence with its decoded equivalent
|
311 |
+
for hex_seq in hex_sequences:
|
312 |
+
bytes_value = bytes.fromhex(hex_seq)
|
313 |
+
input_string = input_string.replace(bytes(f"<0x{hex_seq}>",'utf-8'), bytes_value)
|
314 |
+
|
315 |
+
decoded_str = codecs.decode(input_string, 'utf-8')
|
316 |
+
|
317 |
+
return decoded_str
|
318 |
+
|
319 |
+
def _decode(
|
320 |
+
self,
|
321 |
+
token_ids: Union[int, List[int]],
|
322 |
+
skip_special_tokens: bool = False,
|
323 |
+
clean_up_tokenization_spaces: bool = None,
|
324 |
+
**kwargs,
|
325 |
+
) -> str:
|
326 |
+
|
327 |
+
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
|
328 |
+
|
329 |
+
if isinstance(token_ids, int):
|
330 |
+
token_ids = [token_ids]
|
331 |
+
|
332 |
+
# custom logic since there's some spacing issue with AddedToken
|
333 |
+
tokens = self.convert_ids_to_tokens(token_ids)
|
334 |
+
text = ""
|
335 |
+
i = 0
|
336 |
+
for id,token in zip(token_ids,tokens):
|
337 |
+
if skip_special_tokens and id in self.all_special_ids:
|
338 |
+
continue
|
339 |
+
|
340 |
+
if id>=32000 and i!= 0: #check for AddedToken and not the first token
|
341 |
+
text += " " + token
|
342 |
+
else:
|
343 |
+
text += token
|
344 |
+
i += 1
|
345 |
+
text = re.sub("▁"," ",text)
|
346 |
+
text = self.decode_hex_in_sentence(text)
|
347 |
+
text = self.convert_emojis(text)
|
348 |
+
text = text.lstrip().rstrip()
|
349 |
+
|
350 |
+
clean_up_tokenization_spaces = (
|
351 |
+
clean_up_tokenization_spaces
|
352 |
+
if clean_up_tokenization_spaces is not None
|
353 |
+
else self.clean_up_tokenization_spaces
|
354 |
+
)
|
355 |
+
if clean_up_tokenization_spaces:
|
356 |
+
clean_text = self.clean_up_tokenization(text)
|
357 |
+
return clean_text
|
358 |
+
else:
|
359 |
+
return text
|