SER_model_xapiens / README.md
Nugrahasetyaardi's picture
Model save
cb9cb5e verified
|
raw
history blame
5.83 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: SER_model_xapiens
    results: []

SER_model_xapiens

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9329
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.6121 0.2167
No log 2.0 3 1.6109 0.2333
No log 3.0 5 1.6090 0.25
No log 4.0 6 1.6078 0.2667
No log 5.0 7 1.6058 0.2833
No log 6.0 9 1.6006 0.35
0.8024 7.0 11 1.5947 0.35
0.8024 8.0 12 1.5894 0.3667
0.8024 9.0 13 1.5809 0.35
0.8024 10.0 15 1.5609 0.3667
0.8024 11.0 17 1.5417 0.4
0.8024 12.0 18 1.5310 0.4167
0.8024 13.0 19 1.5147 0.4333
0.7692 14.0 21 1.4847 0.4833
0.7692 15.0 23 1.4592 0.5167
0.7692 16.0 24 1.4384 0.5
0.7692 17.0 25 1.4147 0.5
0.7692 18.0 27 1.3769 0.5167
0.7692 19.0 29 1.3544 0.5167
0.6858 20.0 30 1.3325 0.55
0.6858 21.0 31 1.3084 0.55
0.6858 22.0 33 1.2617 0.5667
0.6858 23.0 35 1.2359 0.6
0.6858 24.0 36 1.2245 0.5833
0.6858 25.0 37 1.2005 0.6333
0.6858 26.0 39 1.1695 0.6333
0.5744 27.0 41 1.1539 0.6
0.5744 28.0 42 1.1370 0.6333
0.5744 29.0 43 1.1075 0.65
0.5744 30.0 45 1.0617 0.6833
0.5744 31.0 47 1.0745 0.6167
0.5744 32.0 48 1.0653 0.5833
0.5744 33.0 49 1.0667 0.5833
0.4853 34.0 51 1.0611 0.6
0.4853 35.0 53 1.1032 0.6333
0.4853 36.0 54 1.0963 0.6167
0.4853 37.0 55 1.0748 0.6167
0.4853 38.0 57 1.0446 0.6333
0.4853 39.0 59 1.0205 0.6167
0.4276 40.0 60 1.0241 0.6333
0.4276 41.0 61 1.0499 0.6167
0.4276 42.0 63 1.0788 0.6167
0.4276 43.0 65 1.0358 0.6167
0.4276 44.0 66 1.0175 0.6
0.4276 45.0 67 1.0082 0.65
0.4276 46.0 69 0.9862 0.65
0.393 47.0 71 0.9763 0.6
0.393 48.0 72 0.9660 0.6
0.393 49.0 73 0.9506 0.6167
0.393 50.0 75 0.9394 0.65
0.393 51.0 77 0.9393 0.7
0.393 52.0 78 0.9463 0.65
0.393 53.0 79 0.9643 0.6167
0.3588 54.0 81 0.9750 0.6333
0.3588 55.0 83 0.9558 0.65
0.3588 56.0 84 0.9494 0.6333
0.3588 57.0 85 0.9450 0.6167
0.3588 58.0 87 0.9466 0.6
0.3588 59.0 89 0.9385 0.6
0.3372 60.0 90 0.9343 0.6667
0.3372 61.0 91 0.9309 0.6667
0.3372 62.0 93 0.9286 0.65
0.3372 63.0 95 0.9301 0.65
0.3372 64.0 96 0.9313 0.65
0.3372 65.0 97 0.9314 0.6667
0.3372 66.0 99 0.9327 0.6667
0.3246 66.6667 100 0.9329 0.6667

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0
  • Datasets 2.19.2.dev0
  • Tokenizers 0.19.1