SER_model_xapiens / README.md
Nugrahasetyaardi's picture
Model save
7f768a6 verified
|
raw
history blame
7.77 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: SER_model_xapiens
    results: []

SER_model_xapiens

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7902
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.6064 0.1833
No log 2.0 2 1.6067 0.1667
No log 3.0 3 1.6075 0.1
No log 4.0 4 1.6086 0.2
No log 5.0 5 1.6099 0.1667
No log 6.0 6 1.6110 0.1833
No log 7.0 7 1.6132 0.1833
No log 8.0 8 1.6156 0.1667
No log 9.0 9 1.6173 0.25
1.5968 10.0 10 1.6201 0.2833
1.5968 11.0 11 1.6210 0.3167
1.5968 12.0 12 1.6208 0.3
1.5968 13.0 13 1.6162 0.35
1.5968 14.0 14 1.6076 0.3667
1.5968 15.0 15 1.5950 0.4
1.5968 16.0 16 1.5843 0.3833
1.5968 17.0 17 1.5706 0.4
1.5968 18.0 18 1.5506 0.4
1.5968 19.0 19 1.5278 0.4167
1.5049 20.0 20 1.5029 0.4167
1.5049 21.0 21 1.4745 0.4333
1.5049 22.0 22 1.4454 0.4667
1.5049 23.0 23 1.4123 0.4833
1.5049 24.0 24 1.3828 0.4833
1.5049 25.0 25 1.3580 0.4833
1.5049 26.0 26 1.3328 0.4833
1.5049 27.0 27 1.3053 0.4667
1.5049 28.0 28 1.2808 0.4833
1.5049 29.0 29 1.2581 0.4667
1.2782 30.0 30 1.2392 0.45
1.2782 31.0 31 1.2202 0.45
1.2782 32.0 32 1.1858 0.45
1.2782 33.0 33 1.1552 0.4667
1.2782 34.0 34 1.1385 0.4667
1.2782 35.0 35 1.1221 0.4667
1.2782 36.0 36 1.1088 0.4667
1.2782 37.0 37 1.0941 0.4667
1.2782 38.0 38 1.0764 0.4667
1.2782 39.0 39 1.0624 0.4667
1.0507 40.0 40 1.0446 0.45
1.0507 41.0 41 1.0348 0.5
1.0507 42.0 42 1.0177 0.4833
1.0507 43.0 43 1.0010 0.4667
1.0507 44.0 44 0.9913 0.4833
1.0507 45.0 45 0.9695 0.4833
1.0507 46.0 46 0.9485 0.5167
1.0507 47.0 47 0.9873 0.4667
1.0507 48.0 48 0.9856 0.4667
1.0507 49.0 49 0.9353 0.4667
0.906 50.0 50 0.9049 0.5333
0.906 51.0 51 0.8960 0.5167
0.906 52.0 52 0.8972 0.5167
0.906 53.0 53 0.8801 0.5167
0.906 54.0 54 0.8654 0.55
0.906 55.0 55 0.8813 0.55
0.906 56.0 56 0.8894 0.5333
0.906 57.0 57 0.8758 0.5333
0.906 58.0 58 0.8794 0.5333
0.906 59.0 59 0.8952 0.55
0.8081 60.0 60 0.8949 0.55
0.8081 61.0 61 0.8789 0.5833
0.8081 62.0 62 0.8545 0.6167
0.8081 63.0 63 0.8440 0.6333
0.8081 64.0 64 0.8344 0.6667
0.8081 65.0 65 0.8368 0.6333
0.8081 66.0 66 0.8504 0.6333
0.8081 67.0 67 0.8604 0.6167
0.8081 68.0 68 0.8637 0.6167
0.8081 69.0 69 0.8641 0.65
0.7364 70.0 70 0.8660 0.65
0.7364 71.0 71 0.8604 0.65
0.7364 72.0 72 0.8546 0.65
0.7364 73.0 73 0.8461 0.65
0.7364 74.0 74 0.8426 0.6833
0.7364 75.0 75 0.8443 0.6833
0.7364 76.0 76 0.8413 0.6833
0.7364 77.0 77 0.8385 0.6833
0.7364 78.0 78 0.8399 0.65
0.7364 79.0 79 0.8432 0.65
0.6787 80.0 80 0.8443 0.6167
0.6787 81.0 81 0.8433 0.6167
0.6787 82.0 82 0.8370 0.6167
0.6787 83.0 83 0.8315 0.6
0.6787 84.0 84 0.8275 0.6167
0.6787 85.0 85 0.8190 0.6333
0.6787 86.0 86 0.8134 0.6667
0.6787 87.0 87 0.8104 0.6833
0.6787 88.0 88 0.8108 0.6833
0.6787 89.0 89 0.8140 0.6833
0.6359 90.0 90 0.8145 0.6833
0.6359 91.0 91 0.8153 0.6667
0.6359 92.0 92 0.8135 0.6833
0.6359 93.0 93 0.8108 0.6833
0.6359 94.0 94 0.8072 0.6833
0.6359 95.0 95 0.8017 0.6833
0.6359 96.0 96 0.7965 0.7
0.6359 97.0 97 0.7928 0.7
0.6359 98.0 98 0.7908 0.7333
0.6359 99.0 99 0.7904 0.7333
0.6092 100.0 100 0.7902 0.7333

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0
  • Datasets 2.19.2.dev0
  • Tokenizers 0.19.1