metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: SER_model_xapiens
results: []
SER_model_xapiens
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7902
- Accuracy: 0.7333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 1.6064 | 0.1833 |
No log | 2.0 | 2 | 1.6067 | 0.1667 |
No log | 3.0 | 3 | 1.6075 | 0.1 |
No log | 4.0 | 4 | 1.6086 | 0.2 |
No log | 5.0 | 5 | 1.6099 | 0.1667 |
No log | 6.0 | 6 | 1.6110 | 0.1833 |
No log | 7.0 | 7 | 1.6132 | 0.1833 |
No log | 8.0 | 8 | 1.6156 | 0.1667 |
No log | 9.0 | 9 | 1.6173 | 0.25 |
1.5968 | 10.0 | 10 | 1.6201 | 0.2833 |
1.5968 | 11.0 | 11 | 1.6210 | 0.3167 |
1.5968 | 12.0 | 12 | 1.6208 | 0.3 |
1.5968 | 13.0 | 13 | 1.6162 | 0.35 |
1.5968 | 14.0 | 14 | 1.6076 | 0.3667 |
1.5968 | 15.0 | 15 | 1.5950 | 0.4 |
1.5968 | 16.0 | 16 | 1.5843 | 0.3833 |
1.5968 | 17.0 | 17 | 1.5706 | 0.4 |
1.5968 | 18.0 | 18 | 1.5506 | 0.4 |
1.5968 | 19.0 | 19 | 1.5278 | 0.4167 |
1.5049 | 20.0 | 20 | 1.5029 | 0.4167 |
1.5049 | 21.0 | 21 | 1.4745 | 0.4333 |
1.5049 | 22.0 | 22 | 1.4454 | 0.4667 |
1.5049 | 23.0 | 23 | 1.4123 | 0.4833 |
1.5049 | 24.0 | 24 | 1.3828 | 0.4833 |
1.5049 | 25.0 | 25 | 1.3580 | 0.4833 |
1.5049 | 26.0 | 26 | 1.3328 | 0.4833 |
1.5049 | 27.0 | 27 | 1.3053 | 0.4667 |
1.5049 | 28.0 | 28 | 1.2808 | 0.4833 |
1.5049 | 29.0 | 29 | 1.2581 | 0.4667 |
1.2782 | 30.0 | 30 | 1.2392 | 0.45 |
1.2782 | 31.0 | 31 | 1.2202 | 0.45 |
1.2782 | 32.0 | 32 | 1.1858 | 0.45 |
1.2782 | 33.0 | 33 | 1.1552 | 0.4667 |
1.2782 | 34.0 | 34 | 1.1385 | 0.4667 |
1.2782 | 35.0 | 35 | 1.1221 | 0.4667 |
1.2782 | 36.0 | 36 | 1.1088 | 0.4667 |
1.2782 | 37.0 | 37 | 1.0941 | 0.4667 |
1.2782 | 38.0 | 38 | 1.0764 | 0.4667 |
1.2782 | 39.0 | 39 | 1.0624 | 0.4667 |
1.0507 | 40.0 | 40 | 1.0446 | 0.45 |
1.0507 | 41.0 | 41 | 1.0348 | 0.5 |
1.0507 | 42.0 | 42 | 1.0177 | 0.4833 |
1.0507 | 43.0 | 43 | 1.0010 | 0.4667 |
1.0507 | 44.0 | 44 | 0.9913 | 0.4833 |
1.0507 | 45.0 | 45 | 0.9695 | 0.4833 |
1.0507 | 46.0 | 46 | 0.9485 | 0.5167 |
1.0507 | 47.0 | 47 | 0.9873 | 0.4667 |
1.0507 | 48.0 | 48 | 0.9856 | 0.4667 |
1.0507 | 49.0 | 49 | 0.9353 | 0.4667 |
0.906 | 50.0 | 50 | 0.9049 | 0.5333 |
0.906 | 51.0 | 51 | 0.8960 | 0.5167 |
0.906 | 52.0 | 52 | 0.8972 | 0.5167 |
0.906 | 53.0 | 53 | 0.8801 | 0.5167 |
0.906 | 54.0 | 54 | 0.8654 | 0.55 |
0.906 | 55.0 | 55 | 0.8813 | 0.55 |
0.906 | 56.0 | 56 | 0.8894 | 0.5333 |
0.906 | 57.0 | 57 | 0.8758 | 0.5333 |
0.906 | 58.0 | 58 | 0.8794 | 0.5333 |
0.906 | 59.0 | 59 | 0.8952 | 0.55 |
0.8081 | 60.0 | 60 | 0.8949 | 0.55 |
0.8081 | 61.0 | 61 | 0.8789 | 0.5833 |
0.8081 | 62.0 | 62 | 0.8545 | 0.6167 |
0.8081 | 63.0 | 63 | 0.8440 | 0.6333 |
0.8081 | 64.0 | 64 | 0.8344 | 0.6667 |
0.8081 | 65.0 | 65 | 0.8368 | 0.6333 |
0.8081 | 66.0 | 66 | 0.8504 | 0.6333 |
0.8081 | 67.0 | 67 | 0.8604 | 0.6167 |
0.8081 | 68.0 | 68 | 0.8637 | 0.6167 |
0.8081 | 69.0 | 69 | 0.8641 | 0.65 |
0.7364 | 70.0 | 70 | 0.8660 | 0.65 |
0.7364 | 71.0 | 71 | 0.8604 | 0.65 |
0.7364 | 72.0 | 72 | 0.8546 | 0.65 |
0.7364 | 73.0 | 73 | 0.8461 | 0.65 |
0.7364 | 74.0 | 74 | 0.8426 | 0.6833 |
0.7364 | 75.0 | 75 | 0.8443 | 0.6833 |
0.7364 | 76.0 | 76 | 0.8413 | 0.6833 |
0.7364 | 77.0 | 77 | 0.8385 | 0.6833 |
0.7364 | 78.0 | 78 | 0.8399 | 0.65 |
0.7364 | 79.0 | 79 | 0.8432 | 0.65 |
0.6787 | 80.0 | 80 | 0.8443 | 0.6167 |
0.6787 | 81.0 | 81 | 0.8433 | 0.6167 |
0.6787 | 82.0 | 82 | 0.8370 | 0.6167 |
0.6787 | 83.0 | 83 | 0.8315 | 0.6 |
0.6787 | 84.0 | 84 | 0.8275 | 0.6167 |
0.6787 | 85.0 | 85 | 0.8190 | 0.6333 |
0.6787 | 86.0 | 86 | 0.8134 | 0.6667 |
0.6787 | 87.0 | 87 | 0.8104 | 0.6833 |
0.6787 | 88.0 | 88 | 0.8108 | 0.6833 |
0.6787 | 89.0 | 89 | 0.8140 | 0.6833 |
0.6359 | 90.0 | 90 | 0.8145 | 0.6833 |
0.6359 | 91.0 | 91 | 0.8153 | 0.6667 |
0.6359 | 92.0 | 92 | 0.8135 | 0.6833 |
0.6359 | 93.0 | 93 | 0.8108 | 0.6833 |
0.6359 | 94.0 | 94 | 0.8072 | 0.6833 |
0.6359 | 95.0 | 95 | 0.8017 | 0.6833 |
0.6359 | 96.0 | 96 | 0.7965 | 0.7 |
0.6359 | 97.0 | 97 | 0.7928 | 0.7 |
0.6359 | 98.0 | 98 | 0.7908 | 0.7333 |
0.6359 | 99.0 | 99 | 0.7904 | 0.7333 |
0.6092 | 100.0 | 100 | 0.7902 | 0.7333 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0
- Datasets 2.19.2.dev0
- Tokenizers 0.19.1