|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.91 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3539 |
|
- Accuracy: 0.91 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 18 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.2281 | 1.0 | 112 | 2.1128 | 0.26 | |
|
| 1.7082 | 2.0 | 225 | 1.6252 | 0.52 | |
|
| 1.267 | 3.0 | 337 | 1.3100 | 0.54 | |
|
| 1.1791 | 4.0 | 450 | 1.0496 | 0.71 | |
|
| 1.1765 | 5.0 | 562 | 0.8928 | 0.74 | |
|
| 0.5714 | 6.0 | 675 | 0.8298 | 0.77 | |
|
| 0.4869 | 7.0 | 787 | 0.7145 | 0.79 | |
|
| 0.4967 | 8.0 | 900 | 0.6990 | 0.82 | |
|
| 0.8314 | 9.0 | 1012 | 0.5657 | 0.83 | |
|
| 0.4633 | 10.0 | 1125 | 0.4589 | 0.89 | |
|
| 0.5547 | 11.0 | 1237 | 0.4919 | 0.86 | |
|
| 0.4827 | 12.0 | 1350 | 0.4069 | 0.92 | |
|
| 0.324 | 13.0 | 1462 | 0.4634 | 0.87 | |
|
| 0.5224 | 14.0 | 1575 | 0.4419 | 0.86 | |
|
| 0.1873 | 15.0 | 1687 | 0.3988 | 0.89 | |
|
| 0.2852 | 16.0 | 1800 | 0.3788 | 0.9 | |
|
| 0.3169 | 17.0 | 1912 | 0.3526 | 0.89 | |
|
| 0.4491 | 17.92 | 2016 | 0.3539 | 0.91 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|