Edit model card

Spanish RoBERTa2RoBERTa (roberta-base-bne) fine-tuned on MLSUM ES for summarization

Model

BSC-TeMU/roberta-base-bne (RoBERTa Checkpoint)

Dataset

MLSUM is the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.

MLSUM es

Results

Set Metric Value
Test Rouge2 - mid -precision 11.42
Test Rouge2 - mid - recall 10.58
Test Rouge2 - mid - fmeasure 10.69
Test Rouge1 - fmeasure 28.83
Test RougeL - fmeasure 23.15

Raw metrics using HF/metrics rouge:

rouge = datasets.load_metric("rouge")
rouge.compute(predictions=results["pred_summary"], references=results["summary"])

{'rouge1': AggregateScore(low=Score(precision=0.30393366820245, recall=0.27905239591639935, fmeasure=0.283148902808752), mid=Score(precision=0.3068521142101569, recall=0.2817252494122592, fmeasure=0.28560373425206464), high=Score(precision=0.30972608774202665, recall=0.28458152325781716, fmeasure=0.2883786700591887)),
 'rougeL': AggregateScore(low=Score(precision=0.24184668819794716, recall=0.22401171380621518, fmeasure=0.22624104698839514), mid=Score(precision=0.24470388406868163, recall=0.22665793214539162, fmeasure=0.2289118878817394), high=Score(precision=0.2476594458951327, recall=0.22932683203591905, fmeasure=0.23153001570662513))}
 
rouge.compute(predictions=results["pred_summary"], references=results["summary"], rouge_types=["rouge2"])["rouge2"].mid

Score(precision=0.11423200347113865, recall=0.10588038944902506, fmeasure=0.1069921217219595)

Usage

import torch
from transformers import RobertaTokenizerFast, EncoderDecoderModel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt = 'Narrativa/bsc_roberta2roberta_shared-spanish-finetuned-mlsum-summarization'
tokenizer = RobertaTokenizerFast.from_pretrained(ckpt)
model = EncoderDecoderModel.from_pretrained(ckpt).to(device)

def generate_summary(text):

   inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
   input_ids = inputs.input_ids.to(device)
   attention_mask = inputs.attention_mask.to(device)
   output = model.generate(input_ids, attention_mask=attention_mask)
   return tokenizer.decode(output[0], skip_special_tokens=True)
   
text = "Your text here..."
generate_summary(text)

Created by: Narrativa

About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI

Downloads last month
351
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Narrativa/bsc_roberta2roberta_shared-spanish-finetuned-mlsum-summarization

Space using Narrativa/bsc_roberta2roberta_shared-spanish-finetuned-mlsum-summarization 1