|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_hf_numpy, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class AutoencoderKLSingleFileTests(unittest.TestCase): |
|
model_class = AutoencoderKL |
|
ckpt_path = ( |
|
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" |
|
) |
|
repo_id = "stabilityai/sd-vae-ft-mse" |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def test_single_file_inference_same_as_pretrained(self): |
|
model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) |
|
model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) |
|
|
|
image = self.get_sd_image(33) |
|
|
|
generator = torch.Generator(torch_device) |
|
|
|
with torch.no_grad(): |
|
sample_1 = model_1(image, generator=generator.manual_seed(0)).sample |
|
sample_2 = model_2(image, generator=generator.manual_seed(0)).sample |
|
|
|
assert sample_1.shape == sample_2.shape |
|
|
|
output_slice_1 = sample_1.flatten().float().cpu() |
|
output_slice_2 = sample_2.flatten().float().cpu() |
|
|
|
assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 |
|
|
|
def test_single_file_components(self): |
|
model = self.model_class.from_pretrained(self.repo_id) |
|
model_single_file = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) |
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
|
for param_name, param_value in model_single_file.config.items(): |
|
if param_name in PARAMS_TO_IGNORE: |
|
continue |
|
assert ( |
|
model.config[param_name] == param_value |
|
), f"{param_name} differs between pretrained loading and single file loading" |
|
|
|
def test_single_file_arguments(self): |
|
model_default = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) |
|
|
|
assert model_default.config.scaling_factor == 0.18215 |
|
assert model_default.config.sample_size == 256 |
|
assert model_default.dtype == torch.float32 |
|
|
|
scaling_factor = 2.0 |
|
sample_size = 512 |
|
torch_dtype = torch.float16 |
|
|
|
model = self.model_class.from_single_file( |
|
self.ckpt_path, |
|
config=self.repo_id, |
|
sample_size=sample_size, |
|
scaling_factor=scaling_factor, |
|
torch_dtype=torch_dtype, |
|
) |
|
assert model.config.scaling_factor == scaling_factor |
|
assert model.config.sample_size == sample_size |
|
assert model.dtype == torch_dtype |
|
|