# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( AutoencoderKL, ) from diffusers.utils.testing_utils import ( enable_full_determinism, load_hf_numpy, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) enable_full_determinism() @slow @require_torch_gpu class AutoencoderKLSingleFileTests(unittest.TestCase): model_class = AutoencoderKL ckpt_path = ( "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" ) repo_id = "stabilityai/sd-vae-ft-mse" main_input_name = "sample" base_precision = 1e-2 def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def test_single_file_inference_same_as_pretrained(self): model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) image = self.get_sd_image(33) generator = torch.Generator(torch_device) with torch.no_grad(): sample_1 = model_1(image, generator=generator.manual_seed(0)).sample sample_2 = model_2(image, generator=generator.manual_seed(0)).sample assert sample_1.shape == sample_2.shape output_slice_1 = sample_1.flatten().float().cpu() output_slice_2 = sample_2.flatten().float().cpu() assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id) model_single_file = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between pretrained loading and single file loading" def test_single_file_arguments(self): model_default = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) assert model_default.config.scaling_factor == 0.18215 assert model_default.config.sample_size == 256 assert model_default.dtype == torch.float32 scaling_factor = 2.0 sample_size = 512 torch_dtype = torch.float16 model = self.model_class.from_single_file( self.ckpt_path, config=self.repo_id, sample_size=sample_size, scaling_factor=scaling_factor, torch_dtype=torch_dtype, ) assert model.config.scaling_factor == scaling_factor assert model.config.sample_size == sample_size assert model.dtype == torch_dtype