stable-diffusion-v1-5-tst_chair / diffusers /scripts /convert_animatediff_motion_lora_to_diffusers.py
NadaGh's picture
End of training
3a25a0a verified
import argparse
import os
import torch
from huggingface_hub import create_repo, upload_folder
from safetensors.torch import load_file, save_file
def convert_motion_module(original_state_dict):
converted_state_dict = {}
for k, v in original_state_dict.items():
if "pos_encoder" in k:
continue
else:
converted_state_dict[
k.replace(".norms.0", ".norm1")
.replace(".norms.1", ".norm2")
.replace(".ff_norm", ".norm3")
.replace(".attention_blocks.0", ".attn1")
.replace(".attention_blocks.1", ".attn2")
.replace(".temporal_transformer", "")
] = v
return converted_state_dict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint")
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory")
parser.add_argument(
"--push_to_hub",
action="store_true",
default=False,
help="Whether to push the converted model to the HF or not",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
if args.ckpt_path.endswith(".safetensors"):
state_dict = load_file(args.ckpt_path)
else:
state_dict = torch.load(args.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
conv_state_dict = convert_motion_module(state_dict)
# convert to new format
output_dict = {}
for module_name, params in conv_state_dict.items():
if type(params) is not torch.Tensor:
continue
output_dict.update({f"unet.{module_name}": params})
os.makedirs(args.output_path, exist_ok=True)
filepath = os.path.join(args.output_path, "diffusion_pytorch_model.safetensors")
save_file(output_dict, filepath)
if args.push_to_hub:
repo_id = create_repo(args.output_path, exist_ok=True).repo_id
upload_folder(repo_id=repo_id, folder_path=args.output_path, repo_type="model")