stable-diffusion-v1-5-tst_chair
/
diffusers
/scripts
/convert_animatediff_motion_lora_to_diffusers.py
import argparse | |
import os | |
import torch | |
from huggingface_hub import create_repo, upload_folder | |
from safetensors.torch import load_file, save_file | |
def convert_motion_module(original_state_dict): | |
converted_state_dict = {} | |
for k, v in original_state_dict.items(): | |
if "pos_encoder" in k: | |
continue | |
else: | |
converted_state_dict[ | |
k.replace(".norms.0", ".norm1") | |
.replace(".norms.1", ".norm2") | |
.replace(".ff_norm", ".norm3") | |
.replace(".attention_blocks.0", ".attn1") | |
.replace(".attention_blocks.1", ".attn2") | |
.replace(".temporal_transformer", "") | |
] = v | |
return converted_state_dict | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint") | |
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory") | |
parser.add_argument( | |
"--push_to_hub", | |
action="store_true", | |
default=False, | |
help="Whether to push the converted model to the HF or not", | |
) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = get_args() | |
if args.ckpt_path.endswith(".safetensors"): | |
state_dict = load_file(args.ckpt_path) | |
else: | |
state_dict = torch.load(args.ckpt_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
conv_state_dict = convert_motion_module(state_dict) | |
# convert to new format | |
output_dict = {} | |
for module_name, params in conv_state_dict.items(): | |
if type(params) is not torch.Tensor: | |
continue | |
output_dict.update({f"unet.{module_name}": params}) | |
os.makedirs(args.output_path, exist_ok=True) | |
filepath = os.path.join(args.output_path, "diffusion_pytorch_model.safetensors") | |
save_file(output_dict, filepath) | |
if args.push_to_hub: | |
repo_id = create_repo(args.output_path, exist_ok=True).repo_id | |
upload_folder(repo_id=repo_id, folder_path=args.output_path, repo_type="model") | |