import argparse import os import torch from huggingface_hub import create_repo, upload_folder from safetensors.torch import load_file, save_file def convert_motion_module(original_state_dict): converted_state_dict = {} for k, v in original_state_dict.items(): if "pos_encoder" in k: continue else: converted_state_dict[ k.replace(".norms.0", ".norm1") .replace(".norms.1", ".norm2") .replace(".ff_norm", ".norm3") .replace(".attention_blocks.0", ".attn1") .replace(".attention_blocks.1", ".attn2") .replace(".temporal_transformer", "") ] = v return converted_state_dict def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint") parser.add_argument("--output_path", type=str, required=True, help="Path to output directory") parser.add_argument( "--push_to_hub", action="store_true", default=False, help="Whether to push the converted model to the HF or not", ) return parser.parse_args() if __name__ == "__main__": args = get_args() if args.ckpt_path.endswith(".safetensors"): state_dict = load_file(args.ckpt_path) else: state_dict = torch.load(args.ckpt_path, map_location="cpu") if "state_dict" in state_dict.keys(): state_dict = state_dict["state_dict"] conv_state_dict = convert_motion_module(state_dict) # convert to new format output_dict = {} for module_name, params in conv_state_dict.items(): if type(params) is not torch.Tensor: continue output_dict.update({f"unet.{module_name}": params}) os.makedirs(args.output_path, exist_ok=True) filepath = os.path.join(args.output_path, "diffusion_pytorch_model.safetensors") save_file(output_dict, filepath) if args.push_to_hub: repo_id = create_repo(args.output_path, exist_ok=True).repo_id upload_folder(repo_id=repo_id, folder_path=args.output_path, repo_type="model")