File size: 11,692 Bytes
945f77f
 
ea8a21f
 
945f77f
ea8a21f
 
 
 
 
 
 
6d4ddfd
 
 
ea8a21f
 
 
b2f528d
ac3ca25
b2f528d
ea8a21f
d4daa44
 
ea8a21f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3cec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea8a21f
75eefc6
ea8a21f
 
6a3cec8
 
 
 
 
 
 
 
 
ea8a21f
 
 
 
6a3cec8
 
 
ea8a21f
75eefc6
ea8a21f
 
 
 
 
6a3cec8
 
 
 
 
75eefc6
6a3cec8
 
ea8a21f
 
 
 
6d4ddfd
 
ea8a21f
 
6d4ddfd
ea8a21f
 
 
6d4ddfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
license: cc-by-nc-4.0
language:
- en
---
# Jellyfish-7B
<!-- Provide a quick summary of what the model is/does. -->
<!--
<img src="https://i.imgur.com/d8Bl04i.png" alt="PicToModel" width="330"/>
-->
<img src="https://i.imgur.com/E1vqCIw.png" alt="PicToModel" width="330"/>

Other versions of Jellyfish:  
[Jellyfish-8B](https://huggingface.co/NECOUDBFM/Jellyfish-8B)  
[Jellyfish-13B](https://huggingface.co/NECOUDBFM/Jellyfish-13B)

## Model Details
Jellyfish-7B is a large language model equipped with 7 billion parameters.   
We fine-tuned the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model using 
a subset of the [Jellyfish-Instruct](https://huggingface.co/datasets/NECOUDBFM/Jellyfish-Instruct)


Jellyfish-7B vs GPT-3.5-turbo wining rate by GPT4 evaluation is 56.36%.

More details about the model can be found in the [Jellyfish paper](https://arxiv.org/abs/2312.01678).

- **Developed by:** Haochen Zhang, Yuyang Dong, Chuan Xiao, Masafumi Oyamada  
- **Contact: [email protected]**  
- **Funded by:** NEC Corporation, Osaka University  
- **Language(s) (NLP):** English  
- **License:** Non-Commercial Creative Commons license (CC BY-NC-4.0)  
- **Finetuned from model:** [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) 
## Citation

If you find our work useful, please give us credit by citing:

```
@article{zhang2023jellyfish,
  title={Jellyfish: A Large Language Model for Data Preprocessing},
  author={Zhang, Haochen and Dong, Yuyang and Xiao, Chuan and Oyamada, Masafumi},
  journal={arXiv preprint arXiv:2312.01678},
  year={2023}
}
```

## Performance on seen tasks

| Task            | Type   | Dataset           | Non-LLM SoTA<sup>1</sup> | GPT-3.5<sup>2</sup> | GPT-4<sup>2</sup>  | GPT-4o | Table-GPT | Jellyfish-7B | Jellyfish-8B | Jellyfish-13B |
|-----------------|--------|-------------------|-----------------|--------|--------|--------|-----------|--------------|--------------|---------------|
| Error Detection | Seen   | Adult             | *99.10*         | 99.10  | 92.01  | 83.58  | --        | 77.40        | 73.74        | **99.33**     |
| Error Detection | Seen   | Hospital          | 94.40           | **97.80** | 90.74  | 44.76  | --        | 94.51        | 93.40        | *95.59*       |
| Error Detection | Unseen | Flights           | 81.00           | --     | **83.48** | 66.01  | --        | 69.15        | 66.21        | *82.52*       |
| Error Detection | Unseen | Rayyan            | 79.00           | --     | *81.95* | 68.53  | --        | 75.07        | 81.06        | **90.65**     |
| Data Imputation | Seen   | Buy               | 96.50           | 98.50  | **100** | **100** | --        | 98.46        | 98.46        | **100**       |
| Data Imputation | Seen   | Restaurant        | 77.20           | 88.40  | **97.67** | 90.70  | --        | 89.53        | 87.21        | 89.53         |
| Data Imputation | Unseen | Flipkart          | 68.00           | --     | **89.94** | 83.20  | --        | 87.14        | *87.48*      | 81.68         |
| Data Imputation | Unseen | Phone             | 86.70           | --     | **90.79** | 86.78  | --        | 86.52        | 85.68        | *87.21*       |
| Schema Matching | Seen   | MIMIC-III         | 20.00           | --     | 40.00   | 29.41  | --        | **53.33**    | *45.45*      | 40.00         |
| Schema Matching | Seen   | Synthea           | 38.50           | 45.20  | **66.67** | 6.56   | --        | 55.56        | 47.06        | 56.00         |
| Schema Matching | Unseen | CMS               | *50.00*         | --     | 19.35   | 22.22  | --        | 42.86        | 38.10        | **59.29**     |
| Entity Matching | Seen   | Amazon-Google     | 75.58           | 63.50  | 74.21  | 70.91  | 70.10     | **81.69**    | *81.42*      | 81.34         |
| Entity Matching | Seen   | Beer              | 94.37           | **100** | **100** | 90.32  | 96.30     | **100.00**   | **100.00**   | 96.77         |
| Entity Matching | Seen   | DBLP-ACM          | **98.99**       | 96.60  | 97.44  | 95.87  | 93.80     | 98.65        | 98.77        | *98.98*       |
| Entity Matching | Seen   | DBLP-GoogleScholar| *95.70*         | 83.80  | 91.87  | 90.45  | 92.40     | 94.88        | 95.03        | **98.51**     |
| Entity Matching | Seen   | Fodors-Zagats     | **100**         | **100** | **100** | 93.62  | **100**   | **100**      | **100**      | **100**       |
| Entity Matching | Seen   | iTunes-Amazon     | 97.06           | *98.20*| **100** | 98.18  | 94.30     | 96.30        | 96.30        | 98.11         |
| Entity Matching | Unseen | Abt-Buy           | 89.33           | --     | **92.77** | 78.73  | --        | 86.06        | 88.84        | *89.58*       |
| Entity Matching | Unseen | Walmart-Amazon    | 86.89           | 87.00  | **90.27** | 79.19  | 82.40     | 84.91        | 85.24        | *89.42*       |
| Avg             |        |                   | 80.44           | -      | *84.17* | 72.58  | -         | 82.74        | 81.55        | **86.02**     |

_For GPT-3.5 and GPT-4, we used the few-shot approach on all datasets. However, for Jellyfish models, the few-shot approach is disabled on seen datasets and enabled on unseen datasets._   
_Accuracy as the metric for data imputation and the F1 score for other tasks._ 

1.  
  [Ditto](https://arxiv.org/abs/2004.00584) for Entity Matching  
  [SMAT](https://www.researchgate.net/publication/353920530_SMAT_An_Attention-Based_Deep_Learning_Solution_to_the_Automation_of_Schema_Matching) for Schema Matching  
  [HoloDetect](https://arxiv.org/abs/1904.02285) for Error Detection seen datasets  
  [RAHA](https://dl.acm.org/doi/10.1145/3299869.3324956) for Error Detection unseen datasets  
  [IPM](https://ieeexplore.ieee.org/document/9458712) for Data Imputation  
2.  
  [Large Language Models as Data Preprocessors](https://arxiv.org/abs/2308.16361)

## Performance on unseen tasks

### Column Type Annotation

| Dataset           | RoBERTa (159 shots)<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4  | GPT-4o | Jellyfish-7B | Jellyfish-8B | Jellyfish-13B |
|--------|-----------------|--------|--------|--------|--------------|--------------|---------------|
| SOTAB | 79.20 | 89.47 | 91.55 | 65.05 | 83 | 76.33 | 82 |

_Few-shot is disabled for Jellyfish models._   

1. Results from [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745)

### Attribute Value Extraction

| Dataset |Stable Beluga 2 70B<sup>1</sup> | SOLAR 70B<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 <sup>1</sup>|  GPT-4o | Jellyfish-7B | Jellyfish-8B | Jellyfish-13B |
| ---- | ---- | ---- | ---- | ---- | ---- | ----| ----| ----|
| AE-110k | 52.10 | 49.20 | 61.30 | 55.50 | 55.77 | 56.09 |59.55 | 58.12 |
| OA-Mine | 50.80 | 55.20 | 62.70 | 68.90 | 60.20 | 51.98 | 59.22 | 55.96 |

_Few-shot is disabled for Jellyfish models._   

1. Results from [Product Attribute Value Extraction using Large Language Models](https://arxiv.org/abs/2310.12537)


## Prompt Template
```
{system message}

[INST]:

{prompt} (without the {})

[\INST]]
```

## Prompts

We provide the prompts used for both the model's fine-tuning and inference.
You can structure your data according to these prompts.

### System Message
```
You are an AI assistant that follows instruction extremely well.
User will give you a question. Your task is to answer as faithfully as you can.
```

### For Entity Matching
```
You are tasked with determining whether two records listed below are the same based on the information provided.  
Carefully compare the {attribute 1}, {attribute 2}... for each record before making your decision.  
Note that missing values (N/A or \"nan\") should not be used as a basis for your decision.
Record A: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]  
Record B: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]  
Are record A and record B the same entity? Choose your answer from: [Yes, No].  
```

### For Data Imputation
```
You are presented with a {keyword} record that is missing a specific attribute: {attribute X}.
Your task is to deduce or infer the value of {attribute X} using the available information in the record.  
You may be provided with fields like {attribute 1}, {attribute 2}, ... to help you in the inference.  
Record: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]  
Based on the provided record, what would you infer is the value for the missing attribute {attribute X}?  
Answer only the value of {attribute X}.
```

### For Data Imputation
```
You are presented with a {keyword} record that is missing a specific attribute: {attribute X}.
Your task is to deduce or infer the value of {attribute X} using the available information in the record.  
You may be provided with fields like {attribute 1}, {attribute 2}, ... to help you in the inference.  
Record: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]  
Based on the provided record, what would you infer is the value for the missing attribute {attribute X}?  
Answer only the value of {attribute X}.
```

### For Error Detection
_There are two forms of the error detection task.
In the first form, a complete record row is provided, and the task is to determine if a specific value is erroneous.
In the second form, only the value of a specific attribute is given, and the decision about its correctness is based solely on the attribute's name and value.
The subsequent prompt examples pertain to these two forms, respectively._
```
Your task is to determine if there is an error in the value of a specific attribute within the whole record provided.
The attributes may include {attribute 1}, {attribute 2}, ...
Errors may include, but are not limited to, spelling errors, inconsistencies, or values that don't make sense given the context of the whole record.
Record [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Attribute for Verification: [{attribute X}: {attribute X value}]
Question: Is there an error in the value of {attribute X}? Choose your answer from: [Yes, No].
```
```
Your task is to determine if there is an error in the value of a specific attribute.
The attributes may belong to a {keyword} record and could be one of the following: {attribute 1}, {attribute 2}, ...
Errors can include, but are not limited to, spelling errors, inconsistencies, or values that don't make sense for that attribute.  
Note: Missing values (N/A or \"nan\") are not considered errors.
Attribute for Verification: [{attribute X}: {attribute X value}]
Question: Is there an error in the value of {attribute X}? Choose your answer from: [Yes, No].
```

### For Schema Matching
```
Your task is to determine if the two attributes (columns) are semantically equivalent in the context of merging two tables.
Each attribute will be provided by its name and a brief description.
Your goal is to assess if they refer to the same information based on these names and descriptions provided.
Attribute A is [name: {value of name}, description: {value of description}].
Attribute B is [name: {value of name}, description: {value of description}].
Are Attribute A and Attribute B semantically equivalent? Choose your answer from: [Yes, No].
```

### For Column Type Annotation

We follow the prompt in [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745) (text+inst+2-step).  

### For Attribute Value Extraction

We follow the prompt in [Product Attribute Value Extraction using Large Language Models](https://arxiv.org/abs/2310.12537) (textual, w/o examples).