yuyangdong commited on
Commit
ea8a21f
1 Parent(s): 945f77f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md CHANGED
@@ -1,3 +1,96 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
  ---
6
+ # Jellyfish-7B
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+ <!--
9
+ <img src="https://i.imgur.com/d8Bl04i.png" alt="PicToModel" width="330"/>
10
+ -->
11
+ <img src="https://i.imgur.com/E1vqCIw.png" alt="PicToModel" width="330"/>
12
+
13
+
14
+ ## Model Details
15
+ Jellyfish-7B is a large language model equipped with 7 billion parameters.
16
+ We fine-tuned the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model using the datasets pertinent to data preprocessing tasks.
17
+ The training data include two parts:
18
+ * Jellyfish-13B training data
19
+ * GPT4 generated reasoning data for data preprocessing tasks.
20
+
21
+ More details about the model can be found in the [Jellyfish paper](https://arxiv.org/abs/2312.01678).
22
+
23
+ - **Developed by:** Haochen Zhang, Yuyang Dong, Chuan Xiao, Masafumi Oyamada
24
+ - **Contact: [email protected]**
25
+ - **Funded by:** NEC Corporation, Osaka University
26
+ - **Language(s) (NLP):** English
27
+ - **License:** Non-Commercial Creative Commons license (CC BY-NC-4.0)
28
+ - **Finetuned from model:** [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
29
+ ## Citation
30
+
31
+ If you find our work useful, please give us credit by citing:
32
+
33
+ ```
34
+ @article{zhang2023jellyfish,
35
+ title={Jellyfish: A Large Language Model for Data Preprocessing},
36
+ author={Zhang, Haochen and Dong, Yuyang and Xiao, Chuan and Oyamada, Masafumi},
37
+ journal={arXiv preprint arXiv:2312.01678},
38
+ year={2023}
39
+ }
40
+ ```
41
+
42
+ ## Performance on seen tasks
43
+
44
+ | Task | Type | Dataset | Non-LLM SoTA<sup>1</sup> | GPT-3.5<sup>2</sup> | GPT-4<sup>2</sup> | Jellyfish-13B| Jellyfish-7B |
45
+ | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
46
+ | Entity Matching | Seen | Fodors-Zagats | 100 | 100 | 100 | 100 | 100 |
47
+ | Entity Matching | Seen | Beer | 94.37| 96.30 | 100 | 96.77 | 96.55|
48
+ | Entity Matching | Seen | iTunes-Amazon | 97.06| 96.43 | 100 | 98.11 | 96.30|
49
+ | Entity Matching | Seen | DBLP-ACM | 98.99| 96.99 | 97.44 | 98.98 | 98.88|
50
+ | Entity Matching | Seen | DBLP-GoogleScholar | 95.60| 76.12 | 91.87 | 98.51 | 95.15|
51
+ | Entity Matching | Seen | Amazon-Google | 75.58| 66.53 | 74.21 | 81.34 | 80.83 |
52
+ | Entity Matching | Unseen | Walmart-Amazon | 86.76| 86.17 | 90.27 | 89.42 | 85.64 |
53
+ | Entity Matching | Unseen | Abt-Buy | 89.33 | -- | 92.77 | 89.58 | 82.38 |
54
+ | Data Imputation | Seen | Restaurant | 77.20| 94.19 | 97.67 | 94.19 | 88.37 |
55
+ | Data Imputation | Seen | Buy | 96.50| 98.46 | 100 | 100 | 96.62 |
56
+ | Data Imputation | Unseen | Filpkart | 68.00 | -- | 89.94 | 81.68 | 79.44|
57
+ | Data Imputation | Unseen | Phone | 86.70| -- | 90.79 | 87.21 | 85.00|
58
+ | Error Detection | Seen | Hosptial | 94.40| 90.74 | 90.74 | 95.59 | 96.27 |
59
+ | Error Detection | Seen | Adult | 99.10| 92.01 | 92.01 | 99.33 | 91.96 |
60
+ | Error Detection | Unseen | Flights | 81.00 | -- | 83.48 | 82.52 | 66.92 |
61
+ | Error Detection | Unseen | Rayyan | 79.00| -- | 81.95 | 90.65 | 69.82 |
62
+ | Schema Matching | Seen | Sythea | 38.50| 57.14 | 66.67 | 36.36 | 44.44 |
63
+ | Schema Matching | Seen | MIMIC | 20.00| -- | 40.00 | 40.00 | 40.00 |
64
+ | Schema Matching | Unseen | CMS | 50.00| -- | 19.35 | 59.29 | 13.79 |
65
+
66
+ _For GPT-3.5 and GPT-4, we used the few-shot approach on all datasets. However, for Jellyfish-13B and Jellyfish-Interpreter, the few-shot approach is disabled on seen datasets and enabled on unseen datasets._
67
+ _Accuracy as the metric for data imputation and the F1 score for other tasks._
68
+
69
+ ## Performance on unseen tasks
70
+
71
+ ### Column Type Annotation
72
+
73
+ | Dataset | RoBERTa (159 shots)<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 | Jellfish-13B| Jellyfish-7B |
74
+ | ---- | ---- | ---- | ---- | ---- | ----|
75
+ | SOTAB | 79.20 | 89.47 | 91.55 | 82.00 | 80.89 |
76
+
77
+ _Few-shot is disabled for Jellyfish-13B._
78
+
79
+ 1. Results from [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745)
80
+
81
+ ### Attribute Value Extraction
82
+
83
+ | Dataset |Stable Beluga 2 70B<sup>1</sup> | SOLAR 70B<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 <sup>1</sup>| Jellfish-13B | Jellyfish-7B|
84
+ | ---- | ---- | ---- | ---- | ---- | ---- | ----|
85
+ | AE-110k | 52.10 | 49.20 | 61.30 | 55.50 | 58.12 | 76.85|
86
+ | OA-Mine | 50.80 | 55.20 | 62.70 | 68.90 | 55.96 | 76.04|
87
+
88
+
89
+ ## Prompt Template
90
+ ```
91
+ [INST]:
92
+
93
+ <prompt> (without the <>)
94
+
95
+ [\INST]]
96
+ ```