|
# NanoLM-365M-base |
|
|
|
English | [简体中文](README_zh-CN.md) |
|
|
|
## Introduction |
|
|
|
在 [Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) 的基础上,将 tokenizer 替换为了 [BilingualTokenizer-8K](https://huggingface.co/Mxode/Bilingual-Tokenizer),以达到减小参数的目的。总参数从 0.5B 降低到了 365M。 |
|
|
|
## Details |
|
|
|
为了恢复一定的性能,便于下游任务微调,替换 tokenizer 后我选择冻结主干参数,仅训练 embedding 部分,在 [wikipedia-zh](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered) 和 [cosmopedia-100k](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia-100k) 上训练了 40,000 steps。 |
|
|
|
| | Value | |
|
| :-------------------------: | :----------------------------------------------------------: | |
|
| Total Params | 365 M | |
|
| Trainable Params | < 10 M | |
|
| Trainable Parts | `model.embed_tokens` | |
|
| Training Steps | 40,000 | |
|
| Training Dataset | [wikipedia-zh](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered), [cosmopedia-100k](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia-100k) | |
|
| Optimizer | adamw_torch | |
|
| Learning Rate | 2e-4 | |
|
| LR Scheduler | cosine | |
|
| Weight Decay | 0.1 | |
|
| Warm-up Ratio | 0.03 | |
|
| Batch Size | 16 | |
|
| Gradient Accumulation Steps | 1 | |
|
| Seq Len | 4096 | |
|
| Dtype | bf16 | |
|
| Peak GPU Memory | < 48 GB | |
|
| Device | NVIDIA A100-SXM4-80GB | |
|
|
|
|
|
具体训练记录如下: |
|
![result](static/result.png) |
|
|