Llama-3-8B-sft-lora-en-tw
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.6918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0752 | 1.0 | 161 | 2.0532 |
1.9732 | 2.0 | 322 | 1.9112 |
1.8481 | 3.0 | 483 | 1.8377 |
1.7678 | 4.0 | 644 | 1.7926 |
1.7318 | 5.0 | 805 | 1.7617 |
1.6638 | 6.0 | 966 | 1.7381 |
1.6334 | 7.0 | 1127 | 1.7235 |
1.6117 | 8.0 | 1288 | 1.7130 |
1.6084 | 9.0 | 1449 | 1.7019 |
1.6187 | 10.0 | 1610 | 1.6975 |
1.6255 | 11.0 | 1771 | 1.6941 |
1.5094 | 12.0 | 1932 | 1.6934 |
1.5754 | 13.0 | 2093 | 1.6908 |
1.5813 | 14.0 | 2254 | 1.6916 |
1.5725 | 15.0 | 2415 | 1.6918 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Monsia/Llama-3-8B-sft-lora-en-tw
Base model
meta-llama/Meta-Llama-3-8B-Instruct