|
--- |
|
tags: |
|
- gptq |
|
- 4bit |
|
- int4 |
|
- gptqmodel |
|
- modelcloud |
|
- llama-3.1 |
|
- 8b |
|
- base |
|
license: llama3.1 |
|
--- |
|
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). |
|
|
|
- **bits**: 4 |
|
- **group_size**: 128 |
|
- **desc_act**: true |
|
- **static_groups**: false |
|
- **sym**: true |
|
- **lm_head**: false |
|
- **damp_percent**: 0.01 |
|
- **true_sequential**: true |
|
- **model_name_or_path**: "" |
|
- **model_file_base_name**: "model" |
|
- **quant_method**: "gptq" |
|
- **checkpoint_format**: "gptq" |
|
- **meta**: |
|
- **quantizer**: "gptqmodel:0.9.9-dev0" |
|
|
|
**Here is an example:** |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from gptqmodel import GPTQModel |
|
|
|
device = torch.device("cuda:0") |
|
|
|
model_name = "ModelCloud/Meta-Llama-3.1-8B-gptq-4bit" |
|
|
|
prompt = "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = GPTQModel.from_quantized(model_name) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
res = model.generate(**inputs, num_beams=1, min_new_tokens=1, max_new_tokens=512) |
|
print(tokenizer.decode(res[0])) |
|
``` |