Minami-su's picture
Update README.md
19941b2 verified
|
raw
history blame
2.34 kB
---
license: other
license_name: qwen
license_link: >-
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
language:
- en
- zh
library_name: transformers
pipeline_tag: text-generation
inference: false
tags:
- llama
- qwen
- qwen1.5
- qwen2
---
This is the LLaMAfied version of [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) model by Alibaba Cloud.
The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py).
I have made modifications to make it compatible with qwen1.5.
This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/llamafy_qwen_v2.py
Usage:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen1.5-7B-Chat_llamafy")
model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen1.5-7B-Chat_llamafy", torch_dtype="auto", device_map="auto")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{"role": "user", "content": "Who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs,max_length=2048, streamer=streamer)
```
## Test
load in 4bit
```
hf-causal (pretrained=Qwen1.5-7B-Chat), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.4155|± |0.0144|
| | |acc_norm|0.4480|± |0.0145|
|truthfulqa_mc| 1|mc1 |0.3513|± |0.0167|
| | |mc2 |0.5165|± |0.0159|
|winogrande | 0|acc |0.6330|± |0.0135|
```
load in 4bit
```
hf-causal (pretrained=Qwen1.5-7B-Chat_llamafy), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.4172|± |0.0144|
| | |acc_norm|0.4488|± |0.0145|
|truthfulqa_mc| 1|mc1 |0.3501|± |0.0167|
| | |mc2 |0.5164|± |0.0159|
|winogrande | 0|acc |0.6306|± |0.0136|
```
```