|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v2-base-pretrained_lr5e-5_at0.8_da1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v2-base-pretrained_lr5e-5_at0.8_da1 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3273 |
|
- Wer: 0.1747 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 18.3928 | 5.43 | 250 | 4.5566 | 1.0 | |
|
| 3.4003 | 10.87 | 500 | 3.2320 | 1.0 | |
|
| 2.9641 | 16.3 | 750 | 2.5134 | 1.0 | |
|
| 0.9965 | 21.74 | 1000 | 1.2335 | 0.4165 | |
|
| 0.2103 | 27.17 | 1250 | 1.5883 | 0.2012 | |
|
| 0.1252 | 32.61 | 1500 | 1.5291 | 0.1837 | |
|
| 0.0911 | 38.04 | 1750 | 1.8433 | 0.1901 | |
|
| 0.0717 | 43.48 | 2000 | 1.9624 | 0.1858 | |
|
| 0.0609 | 48.91 | 2250 | 1.9417 | 0.1781 | |
|
| 0.0488 | 54.35 | 2500 | 2.0794 | 0.1751 | |
|
| 0.041 | 59.78 | 2750 | 2.2785 | 0.1837 | |
|
| 0.0357 | 65.22 | 3000 | 2.1884 | 0.1709 | |
|
| 0.0325 | 70.65 | 3250 | 2.2440 | 0.1764 | |
|
| 0.0286 | 76.09 | 3500 | 2.2743 | 0.1764 | |
|
| 0.0263 | 81.52 | 3750 | 2.2614 | 0.1730 | |
|
| 0.0256 | 86.96 | 4000 | 2.3273 | 0.1747 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|