MelanieKoe's picture
Model save
569abcb verified
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr5e-5_at0.8_da0.05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-base-pretrained_lr5e-5_at0.8_da0.05
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9827
- Wer: 1.0295
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 43.0808 | 83.33 | 250 | 28.8440 | 1.0 |
| 8.5391 | 166.67 | 500 | 3.7744 | 1.0 |
| 3.2564 | 250.0 | 750 | 3.1400 | 1.0 |
| 3.0586 | 333.33 | 1000 | 3.1144 | 1.0 |
| 2.9982 | 416.67 | 1250 | 3.0792 | 1.0 |
| 2.927 | 500.0 | 1500 | 3.0777 | 1.0 |
| 2.7925 | 583.33 | 1750 | 3.0732 | 1.0 |
| 2.577 | 666.67 | 2000 | 3.0084 | 1.0 |
| 2.2523 | 750.0 | 2250 | 2.9828 | 1.0 |
| 1.8719 | 833.33 | 2500 | 3.1056 | 1.0026 |
| 1.5177 | 916.67 | 2750 | 3.3320 | 1.0154 |
| 1.233 | 1000.0 | 3000 | 3.5057 | 1.0184 |
| 1.0527 | 1083.33 | 3250 | 3.7065 | 1.0325 |
| 0.9262 | 1166.67 | 3500 | 3.8646 | 1.0316 |
| 0.8456 | 1250.0 | 3750 | 3.9958 | 1.0295 |
| 0.8247 | 1333.33 | 4000 | 3.9827 | 1.0295 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1