Text Generation
Transformers
Safetensors
PyTorch
mistral
finetuned
quantized
4-bit precision
gptq
Safetensors
text-generation-inference
Merge
7b
mistralai/Mistral-7B-Instruct-v0.2
HuggingFaceH4/zephyr-7b-beta
Generated from Trainer
en
dataset:HuggingFaceH4/ultrachat_200k
dataset:HuggingFaceH4/ultrafeedback_binarized
arxiv:2305.18290
arxiv:2310.16944
Eval Results
Inference Endpoints
conversational
metadata
license: apache-2.0
tags:
- finetuned
- quantized
- 4-bit
- gptq
- transformers
- safetensors
- mistral
- text-generation
- Safetensors
- text-generation-inference
- merge
- 7b
- mistralai/Mistral-7B-Instruct-v0.2
- HuggingFaceH4/zephyr-7b-beta
- pytorch
- generated_from_trainer
- en
- dataset:HuggingFaceH4/ultrachat_200k
- dataset:HuggingFaceH4/ultrafeedback_binarized
- arxiv:2305.18290
- arxiv:2310.16944
- base_model:mistralai/Mistral-7B-v0.1
- license:mit
- model-index
- autotrain_compatible
- endpoints_compatible
- region:us
- license:apache-2.0
model_name: zephyr-7b-beta-Mistral-7B-Instruct-v0.2-GPTQ
base_model: MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.2
inference: false
model_creator: MaziyarPanahi
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
Description
MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.2-GPTQ is a quantized (GPTQ) version of MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.2
How to use
Install the necessary packages
pip install --upgrade accelerate auto-gptq transformers
Example Python code
from transformers import AutoTokenizer, pipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import torch
model_id = "MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.2-GPTQ"
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False
)
model = AutoGPTQForCausalLM.from_quantized(
model_id,
use_safetensors=True,
device="cuda:0",
quantize_config=quantize_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)
outputs = pipe("What is a large language model?")
print(outputs[0]["generated_text"])