Edit model card

wav2vec2-large-xlsr-53-breton

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

lang = "br"
test_dataset = load_dataset("common_voice", lang, split="test[:2%]") 

processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton") 
model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
   speech_array, sampling_rate = torchaudio.load(batch["path"])
   batch["speech"] = resampler(speech_array).squeeze().numpy()
   batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
   batch["sentence"] = re.sub("ʼ", "'", batch["sentence"])
   batch["sentence"] = re.sub("’", "'", batch["sentence"])
   batch["sentence"] = re.sub('‘', "'", batch["sentence"])
   return batch

nb_samples = 2
test_dataset = test_dataset.map(speech_file_to_array_fn)

inputs = processor(test_dataset["speech"][:nb_samples], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
   logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:nb_samples])

The above code leads to the following prediction for the first two samples:

  • Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile']
  • Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.']

The model can be evaluated as follows on the {language} test data of Common Voice.

import re
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

lang = 'br'
test_dataset = load_dataset("common_voice", lang, split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
model = Wav2Vec2ForCTC.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
model.to("cuda")

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
  batch["sentence"] = re.sub("ʼ", "'", batch["sentence"])
  batch["sentence"] = re.sub("’", "'", batch["sentence"])
  batch["sentence"] = re.sub('‘', "'", batch["sentence"])
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(remove_special_characters)

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 43.43%

Training

The Common Voice train, validation datasets were used for training.

Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Marxav/wav2vec2-large-xlsr-53-breton

Evaluation results