功能介绍
该模型功能主要是对图片生成文字描述。模型结构使用Encoder-Decoder结构,其中Encoder端使用BEiT模型,Decoder使用GPT模型。
使用中文Muge数据集训练语料,训练5k步,最终验证集loss为0.3737,rouge1为20.419,rouge2为7.3553,rougeL为17.3753,rougeLsum为17.376。
如何使用
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
from PIL import Image
pretrained = "Maciel/Muge-Image-Caption"
model = VisionEncoderDecoderModel.from_pretrained(pretrained)
feature_extractor = ViTFeatureExtractor.from_pretrained(pretrained)
tokenizer = AutoTokenizer.from_pretrained(pretrained)
image_path = "https://huggingface.co/Maciel/Muge-Image-Caption/blob/main/%E9%AB%98%E8%B7%9F%E9%9E%8B.jpg"
image = Image.open(image_path)
if image.mode != "RGB":
image = image.convert("RGB")
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
print(preds)
- Downloads last month
- 32
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.