Edit model card

RoBERTa_token_classification_AraiEval24_Eng_multi

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3465
  • Precision: 0.1454
  • Recall: 0.0813
  • F1: 0.1043
  • Accuracy: 0.7143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0794 1.0 1022 1.1888 0.1440 0.0203 0.0356 0.7435
0.9242 2.0 2044 1.1341 0.1719 0.0313 0.0529 0.7451
0.8462 3.0 3066 1.1380 0.1444 0.0606 0.0853 0.7282
0.7496 4.0 4088 1.1755 0.1349 0.0535 0.0766 0.7219
0.6526 5.0 5110 1.2087 0.1337 0.0649 0.0873 0.7270
0.5841 6.0 6132 1.2208 0.1323 0.0676 0.0895 0.7178
0.5311 7.0 7154 1.2532 0.1345 0.0801 0.1004 0.7088
0.4749 8.0 8176 1.3047 0.1459 0.0727 0.0970 0.7184
0.4393 9.0 9198 1.3341 0.1473 0.0801 0.1038 0.7187
0.4015 10.0 10220 1.3465 0.1454 0.0813 0.1043 0.7143

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .