LoneStriker's picture
Upload folder using huggingface_hub
e8e7b9e verified
---
tags:
- merge
license: other
model-index:
- name: BoreanGale-70B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 68.6
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
---
<img src=https://huggingface.co/alchemonaut/BoreanGale-70B/resolve/main/bg.png>
# BoreanGale-70B
A merge using a custom algorithm (NearSwap) of:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2)
<br/>
<br/>
# Quants
Several quants are available thanks to community efforts.
| Type | Misc | Author |
| ----- | ----- | ----- |
| [GGUF](https://huggingface.co/Nexesenex/alchemonaut_BoreanGale-70B-iMat.GGUF) | iMat Q3 | Nexesenex |
| [GGUF](https://huggingface.co/mradermacher/BoreanGale-70B-i1-GGUF) | iMat | mradermacher |
| [GGUF](https://huggingface.co/mradermacher/BoreanGale-70B-GGUF) | Q8_0 | mradermacher |
# NearSwap Algorithm
NearSwap retains most of the weights of the base model (Miqu), but when a weight is similar between the two, it is interpolated to the secondary model (WinterGoddess) value. A parameter *t* specifies the sameness threshold. When the distance between two values is below *t*, the weight from the secondary model (WinterGoddess) is used.
This version of the model uses *t* = 0.001. At this *t*, about 10% of weights are fully switched to WinterGoddess. Model quality rapidly degrades above *t* = 0.0025:
- *t* = 0.0001 (~0.8% full swap): [QuartetAnemoi-70B-t0.0001](https://huggingface.co/alchemonaut/QuartetAnemoi-70B-t0.0001)
- *t* = 0.0003 (~2% full swap)
- *t* = 0.001 (~10% full swap): This model
- *t* = 0.0025 (~18% full swap): Generates one paragraph okay, but then reverts to garbage
- *t* = 0.005 (~35% full swap): Garbage; semi-related word lists
- *t* = 0.01 (~55% full swap): Garbage; pseudorandom tokens output
NearSwap implementation:
```
t: Union[float, np.ndarray],
v0: Union[np.ndarray, torch.Tensor],
v1: Union[np.ndarray, torch.Tensor],
...
lweight = numpy.absolute(v0-v1)
lweight = t / lweight
lweight = numpy.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0)
numpy.clip(lweight, a_min=0.0, a_max=1.0, out=lweight)
res = lerp(lweight,v0,v1)
```
<br/>
<br/>
# License and Use
Since the ultimate origin of Miqu is at this time unknown beyond speculation, this model is for noncommercial research use only.
<br/>
<br/>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alchemonaut__BoreanGale-70B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.48|
|AI2 Reasoning Challenge (25-Shot)|73.89|
|HellaSwag (10-Shot) |89.37|
|MMLU (5-Shot) |75.19|
|TruthfulQA (0-shot) |68.6|
|Winogrande (5-shot) |84.53|
|GSM8k (5-shot) |67.32|