metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: V0508HMA15HPHI3B2
results: []
V0508HMA15HPHI3B2
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3691 | 0.09 | 10 | 0.1863 |
0.1586 | 0.18 | 20 | 0.1406 |
0.1444 | 0.27 | 30 | 0.1391 |
0.1366 | 0.36 | 40 | 0.1237 |
0.1228 | 0.45 | 50 | 0.1353 |
0.1212 | 0.54 | 60 | 0.0898 |
0.1116 | 0.63 | 70 | 0.1008 |
0.0983 | 0.73 | 80 | 0.0803 |
0.0756 | 0.82 | 90 | 0.0930 |
0.0848 | 0.91 | 100 | 0.0721 |
0.073 | 1.0 | 110 | 0.0729 |
0.0499 | 1.09 | 120 | 0.0691 |
0.0594 | 1.18 | 130 | 0.1105 |
0.067 | 1.27 | 140 | 0.0751 |
0.0489 | 1.36 | 150 | 0.0821 |
0.0622 | 1.45 | 160 | 0.0838 |
0.0654 | 1.54 | 170 | 0.0764 |
0.0574 | 1.63 | 180 | 0.0826 |
0.0562 | 1.72 | 190 | 0.0757 |
0.0608 | 1.81 | 200 | 0.0795 |
0.061 | 1.9 | 210 | 0.0796 |
0.0552 | 1.99 | 220 | 0.0796 |
0.0293 | 2.08 | 230 | 0.0849 |
0.0219 | 2.18 | 240 | 0.1143 |
0.0257 | 2.27 | 250 | 0.0967 |
0.0204 | 2.36 | 260 | 0.0831 |
0.0251 | 2.45 | 270 | 0.0882 |
0.0182 | 2.54 | 280 | 0.0959 |
0.0189 | 2.63 | 290 | 0.0925 |
0.0243 | 2.72 | 300 | 0.0909 |
0.0226 | 2.81 | 310 | 0.0890 |
0.017 | 2.9 | 320 | 0.0884 |
0.0201 | 2.99 | 330 | 0.0885 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1