Phi0503HMA9OLD / README.md
Litzy619's picture
End of training
3a112fc verified
---
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503HMA9
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.2397 | 0.09 | 10 | 0.9388 |
| 0.4415 | 0.18 | 20 | 0.2391 |
| 0.3515 | 0.27 | 30 | 0.4918 |
| 0.5443 | 0.36 | 40 | 0.2339 |
| 0.1825 | 0.45 | 50 | 0.1731 |
| 0.1495 | 0.54 | 60 | 0.1281 |
| 0.1193 | 0.63 | 70 | 0.1264 |
| 0.1131 | 0.73 | 80 | 0.0966 |
| 0.1079 | 0.82 | 90 | 0.0873 |
| 0.0996 | 0.91 | 100 | 0.1119 |
| 0.1235 | 1.0 | 110 | 0.1549 |
| 0.1281 | 1.09 | 120 | 0.1463 |
| 0.1094 | 1.18 | 130 | 0.1796 |
| 0.1368 | 1.27 | 140 | 0.0994 |
| 0.0742 | 1.36 | 150 | 0.0722 |
| 0.0751 | 1.45 | 160 | 0.0777 |
| 0.0638 | 1.54 | 170 | 0.0717 |
| 0.0619 | 1.63 | 180 | 0.0672 |
| 0.0556 | 1.72 | 190 | 0.0699 |
| 0.0628 | 1.81 | 200 | 0.0666 |
| 0.054 | 1.9 | 210 | 0.0699 |
| 0.0534 | 1.99 | 220 | 0.0694 |
| 0.0383 | 2.08 | 230 | 0.0679 |
| 0.0312 | 2.18 | 240 | 0.0794 |
| 0.0266 | 2.27 | 250 | 0.0818 |
| 0.0272 | 2.36 | 260 | 0.0765 |
| 0.0401 | 2.45 | 270 | 0.0693 |
| 0.0272 | 2.54 | 280 | 0.0696 |
| 0.0262 | 2.63 | 290 | 0.0736 |
| 0.0329 | 2.72 | 300 | 0.0724 |
| 0.0316 | 2.81 | 310 | 0.0720 |
| 0.0296 | 2.9 | 320 | 0.0715 |
| 0.0336 | 2.99 | 330 | 0.0714 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0