Phi0503HMA8OLD / README.md
Litzy619's picture
End of training
4b3809f verified
---
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503HMA8
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0686
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.3865 | 0.09 | 10 | 1.2753 |
| 0.5539 | 0.18 | 20 | 0.2766 |
| 0.5947 | 0.27 | 30 | 0.2953 |
| 0.2568 | 0.36 | 40 | 0.2363 |
| 0.2491 | 0.45 | 50 | 0.2147 |
| 0.2056 | 0.54 | 60 | 0.2216 |
| 0.1891 | 0.63 | 70 | 0.1671 |
| 0.1675 | 0.73 | 80 | 0.1412 |
| 0.1048 | 0.82 | 90 | 0.0875 |
| 0.0832 | 0.91 | 100 | 0.0893 |
| 0.1 | 1.0 | 110 | 0.0979 |
| 0.0777 | 1.09 | 120 | 0.0755 |
| 0.0726 | 1.18 | 130 | 0.0886 |
| 0.1565 | 1.27 | 140 | 0.0863 |
| 0.0881 | 1.36 | 150 | 0.0741 |
| 0.0792 | 1.45 | 160 | 0.0784 |
| 0.0742 | 1.54 | 170 | 0.0716 |
| 0.0673 | 1.63 | 180 | 0.0688 |
| 0.0644 | 1.72 | 190 | 0.0674 |
| 0.0687 | 1.81 | 200 | 0.0684 |
| 0.0644 | 1.9 | 210 | 0.0695 |
| 0.0641 | 1.99 | 220 | 0.0694 |
| 0.039 | 2.08 | 230 | 0.0703 |
| 0.0375 | 2.18 | 240 | 0.0849 |
| 0.0345 | 2.27 | 250 | 0.0772 |
| 0.0324 | 2.36 | 260 | 0.0694 |
| 0.0386 | 2.45 | 270 | 0.0736 |
| 0.0336 | 2.54 | 280 | 0.0731 |
| 0.0321 | 2.63 | 290 | 0.0704 |
| 0.0365 | 2.72 | 300 | 0.0705 |
| 0.0394 | 2.81 | 310 | 0.0697 |
| 0.0357 | 2.9 | 320 | 0.0687 |
| 0.0379 | 2.99 | 330 | 0.0686 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0