metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA21
results: []
Phi0503HMA21
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0794
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.1061 | 0.09 | 10 | 0.5701 |
0.3292 | 0.18 | 20 | 0.2533 |
0.2565 | 0.27 | 30 | 0.2490 |
0.2161 | 0.36 | 40 | 0.1862 |
0.163 | 0.45 | 50 | 0.1199 |
0.109 | 0.54 | 60 | 0.0888 |
0.0833 | 0.63 | 70 | 0.0985 |
0.0873 | 0.73 | 80 | 0.0762 |
0.0781 | 0.82 | 90 | 0.0865 |
0.0786 | 0.91 | 100 | 0.0713 |
0.0812 | 1.0 | 110 | 0.0736 |
0.0765 | 1.09 | 120 | 0.0981 |
0.0688 | 1.18 | 130 | 0.0867 |
0.0715 | 1.27 | 140 | 0.0707 |
0.0796 | 1.36 | 150 | 0.2589 |
0.1059 | 1.45 | 160 | 0.0739 |
0.0619 | 1.54 | 170 | 0.0747 |
0.0685 | 1.63 | 180 | 0.0638 |
0.0559 | 1.72 | 190 | 0.0641 |
0.0609 | 1.81 | 200 | 0.0675 |
0.0541 | 1.9 | 210 | 0.0809 |
0.0555 | 1.99 | 220 | 0.0683 |
0.0312 | 2.08 | 230 | 0.0746 |
0.032 | 2.18 | 240 | 0.0838 |
0.0241 | 2.27 | 250 | 0.0930 |
0.0279 | 2.36 | 260 | 0.0878 |
0.0316 | 2.45 | 270 | 0.0809 |
0.0216 | 2.54 | 280 | 0.0810 |
0.0256 | 2.63 | 290 | 0.0819 |
0.0298 | 2.72 | 300 | 0.0801 |
0.0281 | 2.81 | 310 | 0.0795 |
0.0249 | 2.9 | 320 | 0.0793 |
0.0278 | 2.99 | 330 | 0.0794 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0