metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA17
results: []
Phi0503HMA17
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0613
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.8235 | 0.09 | 10 | 0.4394 |
0.3037 | 0.18 | 20 | 0.2360 |
0.2646 | 0.27 | 30 | 0.2336 |
0.2183 | 0.36 | 40 | 0.1923 |
0.164 | 0.45 | 50 | 0.2113 |
0.2323 | 0.54 | 60 | 0.1157 |
0.0954 | 0.63 | 70 | 0.0939 |
0.0792 | 0.73 | 80 | 0.0938 |
0.0914 | 0.82 | 90 | 0.0814 |
0.0757 | 0.91 | 100 | 0.0724 |
0.0795 | 1.0 | 110 | 0.0717 |
0.0546 | 1.09 | 120 | 0.0677 |
0.0535 | 1.18 | 130 | 0.0718 |
0.0617 | 1.27 | 140 | 0.0718 |
0.0561 | 1.36 | 150 | 0.0765 |
0.0632 | 1.45 | 160 | 0.0595 |
0.0549 | 1.54 | 170 | 0.0612 |
0.0404 | 1.63 | 180 | 0.0521 |
0.0353 | 1.72 | 190 | 0.0431 |
0.0396 | 1.81 | 200 | 0.0489 |
0.0272 | 1.9 | 210 | 0.0543 |
0.032 | 1.99 | 220 | 0.0489 |
0.0132 | 2.08 | 230 | 0.0512 |
0.0101 | 2.18 | 240 | 0.0641 |
0.0089 | 2.27 | 250 | 0.0688 |
0.0095 | 2.36 | 260 | 0.0623 |
0.0072 | 2.45 | 270 | 0.0620 |
0.0086 | 2.54 | 280 | 0.0628 |
0.0073 | 2.63 | 290 | 0.0624 |
0.0068 | 2.72 | 300 | 0.0619 |
0.0098 | 2.81 | 310 | 0.0621 |
0.0088 | 2.9 | 320 | 0.0618 |
0.0074 | 2.99 | 330 | 0.0613 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0