metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA13
results: []
Phi0503HMA13
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.3182 | 0.09 | 10 | 0.7624 |
0.4834 | 0.18 | 20 | 1.2058 |
0.3549 | 0.27 | 30 | 0.2669 |
0.2274 | 0.36 | 40 | 0.2185 |
0.2285 | 0.45 | 50 | 0.2200 |
0.2479 | 0.54 | 60 | 0.1945 |
0.1659 | 0.63 | 70 | 0.1633 |
0.1503 | 0.73 | 80 | 0.1265 |
0.1177 | 0.82 | 90 | 0.1423 |
0.1198 | 0.91 | 100 | 0.0903 |
0.0947 | 1.0 | 110 | 0.1087 |
0.1089 | 1.09 | 120 | 0.0931 |
0.1213 | 1.18 | 130 | 4.1813 |
4.4675 | 1.27 | 140 | 3.9663 |
2.1661 | 1.36 | 150 | 1.0762 |
0.8392 | 1.45 | 160 | 0.6845 |
0.4289 | 1.54 | 170 | 0.3521 |
0.352 | 1.63 | 180 | 0.3356 |
0.307 | 1.72 | 190 | 0.3067 |
0.3166 | 1.81 | 200 | 0.2883 |
0.2595 | 1.9 | 210 | 0.2330 |
0.2175 | 1.99 | 220 | 0.2074 |
0.1936 | 2.08 | 230 | 0.1947 |
0.1876 | 2.18 | 240 | 0.1737 |
0.1734 | 2.27 | 250 | 0.1709 |
0.1679 | 2.36 | 260 | 0.1631 |
0.1624 | 2.45 | 270 | 0.1630 |
0.1606 | 2.54 | 280 | 0.1582 |
0.1601 | 2.63 | 290 | 0.1574 |
0.1592 | 2.72 | 300 | 0.1542 |
0.1569 | 2.81 | 310 | 0.1519 |
0.1509 | 2.9 | 320 | 0.1505 |
0.1527 | 2.99 | 330 | 0.1500 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0