metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503B1
results: []
Phi0503B1
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0800
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.5697 | 0.09 | 10 | 0.7185 |
0.345 | 0.18 | 20 | 0.1655 |
0.1552 | 0.27 | 30 | 0.1343 |
0.1345 | 0.36 | 40 | 0.1175 |
0.121 | 0.45 | 50 | 0.1152 |
0.1088 | 0.54 | 60 | 0.0861 |
0.0923 | 0.63 | 70 | 0.0942 |
0.0773 | 0.73 | 80 | 0.0681 |
0.0606 | 0.82 | 90 | 0.0686 |
0.0647 | 0.91 | 100 | 0.0624 |
0.062 | 1.0 | 110 | 0.0663 |
0.0434 | 1.09 | 120 | 0.0687 |
0.042 | 1.18 | 130 | 0.0675 |
0.0503 | 1.27 | 140 | 0.0681 |
0.0445 | 1.36 | 150 | 0.0654 |
0.0511 | 1.45 | 160 | 0.0593 |
0.0462 | 1.54 | 170 | 0.0687 |
0.0498 | 1.63 | 180 | 0.0651 |
0.0448 | 1.72 | 190 | 0.0640 |
0.043 | 1.81 | 200 | 0.0636 |
0.04 | 1.9 | 210 | 0.0617 |
0.043 | 1.99 | 220 | 0.0613 |
0.0226 | 2.08 | 230 | 0.0657 |
0.0165 | 2.18 | 240 | 0.0788 |
0.011 | 2.27 | 250 | 0.0943 |
0.0097 | 2.36 | 260 | 0.0946 |
0.0167 | 2.45 | 270 | 0.0864 |
0.0105 | 2.54 | 280 | 0.0827 |
0.0118 | 2.63 | 290 | 0.0819 |
0.0156 | 2.72 | 300 | 0.0802 |
0.0137 | 2.81 | 310 | 0.0800 |
0.013 | 2.9 | 320 | 0.0800 |
0.0098 | 2.99 | 330 | 0.0800 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1