Phi0503B1 / README.md
Litzy619's picture
End of training
b480b04 verified
metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
  - generated_from_trainer
model-index:
  - name: Phi0503B1
    results: []

Phi0503B1

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.5697 0.09 10 0.7185
0.345 0.18 20 0.1655
0.1552 0.27 30 0.1343
0.1345 0.36 40 0.1175
0.121 0.45 50 0.1152
0.1088 0.54 60 0.0861
0.0923 0.63 70 0.0942
0.0773 0.73 80 0.0681
0.0606 0.82 90 0.0686
0.0647 0.91 100 0.0624
0.062 1.0 110 0.0663
0.0434 1.09 120 0.0687
0.042 1.18 130 0.0675
0.0503 1.27 140 0.0681
0.0445 1.36 150 0.0654
0.0511 1.45 160 0.0593
0.0462 1.54 170 0.0687
0.0498 1.63 180 0.0651
0.0448 1.72 190 0.0640
0.043 1.81 200 0.0636
0.04 1.9 210 0.0617
0.043 1.99 220 0.0613
0.0226 2.08 230 0.0657
0.0165 2.18 240 0.0788
0.011 2.27 250 0.0943
0.0097 2.36 260 0.0946
0.0167 2.45 270 0.0864
0.0105 2.54 280 0.0827
0.0118 2.63 290 0.0819
0.0156 2.72 300 0.0802
0.0137 2.81 310 0.0800
0.013 2.9 320 0.0800
0.0098 2.99 330 0.0800

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1