|
--- |
|
license: mit |
|
base_model: microsoft/Phi-3-mini-4k-instruct |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: PHI30512HMAB2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PHI30512HMAB2 |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0706 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 80 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 5.4852 | 0.09 | 10 | 5.4372 | |
|
| 5.4761 | 0.18 | 20 | 5.3249 | |
|
| 5.1807 | 0.27 | 30 | 4.6301 | |
|
| 4.0639 | 0.36 | 40 | 3.0706 | |
|
| 2.2191 | 0.45 | 50 | 1.1829 | |
|
| 0.7606 | 0.54 | 60 | 0.3950 | |
|
| 0.2685 | 0.63 | 70 | 0.1655 | |
|
| 0.1453 | 0.73 | 80 | 0.1335 | |
|
| 0.1187 | 0.82 | 90 | 0.1252 | |
|
| 0.1302 | 0.91 | 100 | 0.1241 | |
|
| 0.1114 | 1.0 | 110 | 0.1113 | |
|
| 0.1009 | 1.09 | 120 | 0.0967 | |
|
| 0.089 | 1.18 | 130 | 0.0971 | |
|
| 0.1047 | 1.27 | 140 | 0.0844 | |
|
| 0.0839 | 1.36 | 150 | 0.0811 | |
|
| 0.0876 | 1.45 | 160 | 0.0815 | |
|
| 0.0769 | 1.54 | 170 | 0.0813 | |
|
| 0.081 | 1.63 | 180 | 0.0765 | |
|
| 0.0673 | 1.72 | 190 | 0.0762 | |
|
| 0.0789 | 1.81 | 200 | 0.0767 | |
|
| 0.0643 | 1.9 | 210 | 0.0739 | |
|
| 0.0715 | 1.99 | 220 | 0.0748 | |
|
| 0.0643 | 2.08 | 230 | 0.0729 | |
|
| 0.0626 | 2.18 | 240 | 0.0722 | |
|
| 0.0565 | 2.27 | 250 | 0.0722 | |
|
| 0.0594 | 2.36 | 260 | 0.0722 | |
|
| 0.0629 | 2.45 | 270 | 0.0717 | |
|
| 0.0594 | 2.54 | 280 | 0.0719 | |
|
| 0.0627 | 2.63 | 290 | 0.0712 | |
|
| 0.0582 | 2.72 | 300 | 0.0705 | |
|
| 0.0659 | 2.81 | 310 | 0.0706 | |
|
| 0.0603 | 2.9 | 320 | 0.0705 | |
|
| 0.0649 | 2.99 | 330 | 0.0706 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.0 |
|
|