PHI30512HMAB19H
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0637
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.3412 | 0.09 | 10 | 1.0490 |
0.505 | 0.18 | 20 | 0.2478 |
0.2656 | 0.27 | 30 | 0.3138 |
0.2403 | 0.36 | 40 | 0.2344 |
0.2486 | 0.45 | 50 | 0.2219 |
0.225 | 0.54 | 60 | 0.2105 |
0.2052 | 0.63 | 70 | 0.1823 |
0.1863 | 0.73 | 80 | 0.1869 |
0.1713 | 0.82 | 90 | 0.1652 |
0.1653 | 0.91 | 100 | 0.1636 |
0.1759 | 1.0 | 110 | 0.1650 |
0.1656 | 1.09 | 120 | 0.1668 |
0.165 | 1.18 | 130 | 0.1663 |
0.1754 | 1.27 | 140 | 0.1632 |
0.1669 | 1.36 | 150 | 0.1633 |
0.1599 | 1.45 | 160 | 0.1642 |
0.1354 | 1.54 | 170 | 0.0952 |
0.0896 | 1.63 | 180 | 0.0788 |
0.0731 | 1.72 | 190 | 0.0714 |
0.0737 | 1.81 | 200 | 0.0721 |
0.0617 | 1.9 | 210 | 0.0779 |
0.068 | 1.99 | 220 | 0.0706 |
0.0528 | 2.08 | 230 | 0.0721 |
0.0606 | 2.18 | 240 | 0.0652 |
0.0544 | 2.27 | 250 | 0.0675 |
0.0531 | 2.36 | 260 | 0.0667 |
0.0559 | 2.45 | 270 | 0.0647 |
0.0507 | 2.54 | 280 | 0.0661 |
0.0523 | 2.63 | 290 | 0.0648 |
0.0524 | 2.72 | 300 | 0.0643 |
0.0591 | 2.81 | 310 | 0.0643 |
0.0531 | 2.9 | 320 | 0.0638 |
0.0544 | 2.99 | 330 | 0.0637 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/PHI30512HMAB19H
Base model
microsoft/Phi-3-mini-4k-instruct