metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: PHI30511HMA9H
results: []
PHI30511HMA9H
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8775 | 0.09 | 10 | 0.3763 |
0.2111 | 0.18 | 20 | 0.1599 |
0.1716 | 0.27 | 30 | 0.1572 |
0.1387 | 0.36 | 40 | 0.1256 |
0.1207 | 0.45 | 50 | 0.1180 |
0.122 | 0.54 | 60 | 0.0924 |
0.0892 | 0.63 | 70 | 0.1051 |
0.0987 | 0.73 | 80 | 0.0895 |
0.0714 | 0.82 | 90 | 0.0755 |
0.0719 | 0.91 | 100 | 0.0724 |
0.0733 | 1.0 | 110 | 0.0718 |
0.049 | 1.09 | 120 | 0.0710 |
0.0504 | 1.18 | 130 | 0.0854 |
0.0585 | 1.27 | 140 | 0.0735 |
0.0539 | 1.36 | 150 | 0.0671 |
0.0588 | 1.45 | 160 | 0.0735 |
0.0502 | 1.54 | 170 | 0.0683 |
0.0509 | 1.63 | 180 | 0.0710 |
0.044 | 1.72 | 190 | 0.0674 |
0.0467 | 1.81 | 200 | 0.0708 |
0.0521 | 1.9 | 210 | 0.0689 |
0.0468 | 1.99 | 220 | 0.0721 |
0.0233 | 2.08 | 230 | 0.0698 |
0.0207 | 2.18 | 240 | 0.0851 |
0.0189 | 2.27 | 250 | 0.1004 |
0.0112 | 2.36 | 260 | 0.1035 |
0.0194 | 2.45 | 270 | 0.0972 |
0.0133 | 2.54 | 280 | 0.0941 |
0.0184 | 2.63 | 290 | 0.0909 |
0.0207 | 2.72 | 300 | 0.0879 |
0.0158 | 2.81 | 310 | 0.0870 |
0.0192 | 2.9 | 320 | 0.0871 |
0.015 | 2.99 | 330 | 0.0869 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1