PHI30511HMA14H / README.md
L0I6T1Z9Y
upload PHI30511HMA14H
bebee91
|
raw
history blame
3.1 kB
metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
  - generated_from_trainer
model-index:
  - name: PHI30511HMA14H
    results: []

PHI30511HMA14H

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.6437 0.09 10 0.2765
0.1835 0.18 20 0.1451
0.1607 0.27 30 0.1438
0.139 0.36 40 0.1311
0.1248 0.45 50 0.1177
0.1233 0.54 60 0.1068
0.0966 0.63 70 0.0814
0.0851 0.73 80 0.0705
0.0809 0.82 90 0.0802
0.0744 0.91 100 0.0700
0.0788 1.0 110 0.0774
0.0466 1.09 120 0.0858
0.0576 1.18 130 0.0824
0.0586 1.27 140 0.0736
0.0619 1.36 150 0.0723
0.0588 1.45 160 0.0713
0.0524 1.54 170 0.0810
0.0569 1.63 180 0.0759
0.0502 1.72 190 0.0779
0.0569 1.81 200 0.0679
0.0517 1.9 210 0.0700
0.0466 1.99 220 0.0682
0.0213 2.08 230 0.0821
0.0166 2.18 240 0.1070
0.0177 2.27 250 0.1156
0.02 2.36 260 0.0961
0.0263 2.45 270 0.0826
0.0126 2.54 280 0.0851
0.0181 2.63 290 0.0858
0.0233 2.72 300 0.0839
0.0196 2.81 310 0.0827
0.0153 2.9 320 0.0823
0.0192 2.99 330 0.0823

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1