G0521HMA26H6
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1009
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.753 | 0.09 | 10 | 1.3369 |
0.9912 | 0.18 | 20 | 0.4756 |
0.3061 | 0.27 | 30 | 0.1627 |
0.1522 | 0.36 | 40 | 0.1527 |
0.1482 | 0.45 | 50 | 0.1474 |
0.1471 | 0.54 | 60 | 0.1490 |
0.1448 | 0.63 | 70 | 0.1437 |
0.1458 | 0.73 | 80 | 0.1424 |
0.1368 | 0.82 | 90 | 0.1407 |
0.129 | 0.91 | 100 | 0.1301 |
0.1337 | 1.0 | 110 | 0.1388 |
0.1212 | 1.09 | 120 | 0.1213 |
0.1143 | 1.18 | 130 | 0.1255 |
0.1204 | 1.27 | 140 | 0.1176 |
0.1211 | 1.36 | 150 | 0.1151 |
0.1158 | 1.45 | 160 | 0.1142 |
0.112 | 1.54 | 170 | 0.1084 |
0.1096 | 1.63 | 180 | 0.1079 |
0.1097 | 1.72 | 190 | 0.1102 |
0.1106 | 1.81 | 200 | 0.1051 |
0.1105 | 1.9 | 210 | 0.1041 |
0.1062 | 1.99 | 220 | 0.1022 |
0.0932 | 2.08 | 230 | 0.1017 |
0.0929 | 2.18 | 240 | 0.1014 |
0.0901 | 2.27 | 250 | 0.1038 |
0.0897 | 2.36 | 260 | 0.1042 |
0.093 | 2.45 | 270 | 0.0998 |
0.0824 | 2.54 | 280 | 0.1008 |
0.0826 | 2.63 | 290 | 0.1014 |
0.0839 | 2.72 | 300 | 0.1016 |
0.0877 | 2.81 | 310 | 0.1013 |
0.0869 | 2.9 | 320 | 0.1010 |
0.0905 | 2.99 | 330 | 0.1009 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0521HMA26H6
Base model
google/gemma-2b