G0521HMA26H5
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1040
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.753 | 0.09 | 10 | 1.3225 |
0.9976 | 0.18 | 20 | 0.4776 |
0.3118 | 0.27 | 30 | 0.1654 |
0.1527 | 0.36 | 40 | 0.1543 |
0.1481 | 0.45 | 50 | 0.1486 |
0.1472 | 0.54 | 60 | 0.1495 |
0.1545 | 0.63 | 70 | 0.1452 |
0.1467 | 0.73 | 80 | 0.1473 |
0.1381 | 0.82 | 90 | 0.1348 |
0.1314 | 0.91 | 100 | 0.1327 |
0.1316 | 1.0 | 110 | 0.1324 |
0.1212 | 1.09 | 120 | 0.1323 |
0.1135 | 1.18 | 130 | 0.1179 |
0.1188 | 1.27 | 140 | 0.1166 |
0.1193 | 1.36 | 150 | 0.1179 |
0.1153 | 1.45 | 160 | 0.1126 |
0.1145 | 1.54 | 170 | 0.1137 |
0.1075 | 1.63 | 180 | 0.1109 |
0.1148 | 1.72 | 190 | 0.1136 |
0.1126 | 1.81 | 200 | 0.1056 |
0.1092 | 1.9 | 210 | 0.1042 |
0.1065 | 1.99 | 220 | 0.1044 |
0.0961 | 2.08 | 230 | 0.1060 |
0.0973 | 2.18 | 240 | 0.1027 |
0.0926 | 2.27 | 250 | 0.1055 |
0.09 | 2.36 | 260 | 0.1084 |
0.0916 | 2.45 | 270 | 0.1066 |
0.0859 | 2.54 | 280 | 0.1057 |
0.0842 | 2.63 | 290 | 0.1042 |
0.0855 | 2.72 | 300 | 0.1044 |
0.0876 | 2.81 | 310 | 0.1045 |
0.0895 | 2.9 | 320 | 0.1041 |
0.0896 | 2.99 | 330 | 0.1040 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0521HMA26H5
Base model
google/gemma-2b