G0521HMA26H4
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1030
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7533 | 0.09 | 10 | 1.3530 |
1.0176 | 0.18 | 20 | 0.4935 |
0.3275 | 0.27 | 30 | 0.1747 |
0.1534 | 0.36 | 40 | 0.1566 |
0.1477 | 0.45 | 50 | 0.1507 |
0.1476 | 0.54 | 60 | 0.1484 |
0.1456 | 0.63 | 70 | 0.1461 |
0.1465 | 0.73 | 80 | 0.1504 |
0.1386 | 0.82 | 90 | 0.1430 |
0.1341 | 0.91 | 100 | 0.1437 |
0.138 | 1.0 | 110 | 0.1362 |
0.1253 | 1.09 | 120 | 0.1360 |
0.1175 | 1.18 | 130 | 0.1205 |
0.1198 | 1.27 | 140 | 0.1219 |
0.1244 | 1.36 | 150 | 0.1200 |
0.1182 | 1.45 | 160 | 0.1153 |
0.1148 | 1.54 | 170 | 0.1119 |
0.1111 | 1.63 | 180 | 0.1223 |
0.11 | 1.72 | 190 | 0.1166 |
0.1126 | 1.81 | 200 | 0.1095 |
0.1113 | 1.9 | 210 | 0.1053 |
0.1052 | 1.99 | 220 | 0.1052 |
0.0971 | 2.08 | 230 | 0.1108 |
0.0968 | 2.18 | 240 | 0.1052 |
0.0927 | 2.27 | 250 | 0.1154 |
0.0946 | 2.36 | 260 | 0.1106 |
0.0946 | 2.45 | 270 | 0.1122 |
0.0868 | 2.54 | 280 | 0.1120 |
0.0825 | 2.63 | 290 | 0.1096 |
0.087 | 2.72 | 300 | 0.1056 |
0.0934 | 2.81 | 310 | 0.1038 |
0.0917 | 2.9 | 320 | 0.1030 |
0.0926 | 2.99 | 330 | 0.1030 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0521HMA26H4
Base model
google/gemma-2b