G0515HMA11H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1345
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.227 | 0.09 | 10 | 2.9881 |
2.7548 | 0.18 | 20 | 2.3671 |
1.9906 | 0.27 | 30 | 1.5123 |
1.1147 | 0.36 | 40 | 0.6531 |
0.4077 | 0.45 | 50 | 0.2179 |
0.1821 | 0.54 | 60 | 0.1575 |
0.1542 | 0.63 | 70 | 0.1511 |
0.1527 | 0.73 | 80 | 0.1501 |
0.1431 | 0.82 | 90 | 0.1497 |
0.1459 | 0.91 | 100 | 0.1482 |
0.1489 | 1.0 | 110 | 0.1489 |
0.1434 | 1.09 | 120 | 0.1488 |
0.1448 | 1.18 | 130 | 0.1497 |
0.1469 | 1.27 | 140 | 0.1477 |
0.1493 | 1.36 | 150 | 0.1477 |
0.1428 | 1.45 | 160 | 0.1508 |
0.1449 | 1.54 | 170 | 0.1477 |
0.1458 | 1.63 | 180 | 0.1469 |
0.1458 | 1.72 | 190 | 0.1480 |
0.1453 | 1.81 | 200 | 0.1481 |
0.1472 | 1.9 | 210 | 0.1474 |
0.1472 | 1.99 | 220 | 0.1464 |
0.143 | 2.08 | 230 | 0.1451 |
0.1382 | 2.18 | 240 | 0.1433 |
0.1395 | 2.27 | 250 | 0.1442 |
0.1397 | 2.36 | 260 | 0.1415 |
0.1377 | 2.45 | 270 | 0.1396 |
0.134 | 2.54 | 280 | 0.1367 |
0.1346 | 2.63 | 290 | 0.1355 |
0.1313 | 2.72 | 300 | 0.1351 |
0.1338 | 2.81 | 310 | 0.1346 |
0.1326 | 2.9 | 320 | 0.1345 |
0.136 | 2.99 | 330 | 0.1345 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/G0515HMA11H
Base model
google/gemma-2b