G0513HMAB2
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1364
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9285 | 0.09 | 10 | 1.9193 |
1.9268 | 0.18 | 20 | 1.9150 |
1.9047 | 0.27 | 30 | 1.8833 |
1.8501 | 0.36 | 40 | 1.7905 |
1.7172 | 0.45 | 50 | 1.6083 |
1.4992 | 0.54 | 60 | 1.3297 |
1.1821 | 0.63 | 70 | 0.9550 |
0.748 | 0.73 | 80 | 0.5145 |
0.3913 | 0.82 | 90 | 0.2609 |
0.2021 | 0.91 | 100 | 0.1661 |
0.1594 | 1.0 | 110 | 0.1513 |
0.1462 | 1.09 | 120 | 0.1484 |
0.1441 | 1.18 | 130 | 0.1473 |
0.1453 | 1.27 | 140 | 0.1458 |
0.1485 | 1.36 | 150 | 0.1448 |
0.1407 | 1.45 | 160 | 0.1455 |
0.1417 | 1.54 | 170 | 0.1428 |
0.1421 | 1.63 | 180 | 0.1416 |
0.1428 | 1.72 | 190 | 0.1438 |
0.1398 | 1.81 | 200 | 0.1403 |
0.1399 | 1.9 | 210 | 0.1392 |
0.141 | 1.99 | 220 | 0.1394 |
0.1377 | 2.08 | 230 | 0.1379 |
0.1363 | 2.18 | 240 | 0.1374 |
0.1352 | 2.27 | 250 | 0.1375 |
0.1394 | 2.36 | 260 | 0.1375 |
0.1362 | 2.45 | 270 | 0.1373 |
0.1324 | 2.54 | 280 | 0.1369 |
0.1317 | 2.63 | 290 | 0.1367 |
0.133 | 2.72 | 300 | 0.1365 |
0.1341 | 2.81 | 310 | 0.1364 |
0.1346 | 2.9 | 320 | 0.1364 |
0.1365 | 2.99 | 330 | 0.1364 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMAB2
Base model
google/gemma-2b