bert-file-classifier-v2
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5555
- Accuracy: 0.8655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 73 | 3.0898 | 0.1448 |
No log | 2.0 | 146 | 2.5365 | 0.4448 |
No log | 3.0 | 219 | 2.0822 | 0.5241 |
No log | 4.0 | 292 | 1.7243 | 0.5793 |
No log | 5.0 | 365 | 1.4901 | 0.6724 |
No log | 6.0 | 438 | 1.2608 | 0.7138 |
1.948 | 7.0 | 511 | 1.1093 | 0.7310 |
1.948 | 8.0 | 584 | 0.9357 | 0.7862 |
1.948 | 9.0 | 657 | 0.8845 | 0.7862 |
1.948 | 10.0 | 730 | 0.7613 | 0.8172 |
1.948 | 11.0 | 803 | 0.7134 | 0.8103 |
1.948 | 12.0 | 876 | 0.6805 | 0.8345 |
1.948 | 13.0 | 949 | 0.6432 | 0.8379 |
0.5068 | 14.0 | 1022 | 0.6068 | 0.8621 |
0.5068 | 15.0 | 1095 | 0.6190 | 0.8448 |
0.5068 | 16.0 | 1168 | 0.5663 | 0.8586 |
0.5068 | 17.0 | 1241 | 0.5458 | 0.8586 |
0.5068 | 18.0 | 1314 | 0.6062 | 0.8379 |
0.5068 | 19.0 | 1387 | 0.5615 | 0.8552 |
0.5068 | 20.0 | 1460 | 0.6120 | 0.8414 |
0.1467 | 21.0 | 1533 | 0.5716 | 0.8655 |
0.1467 | 22.0 | 1606 | 0.5603 | 0.8690 |
0.1467 | 23.0 | 1679 | 0.5601 | 0.8655 |
0.1467 | 24.0 | 1752 | 0.5573 | 0.8586 |
0.1467 | 25.0 | 1825 | 0.5555 | 0.8655 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Lesllie/bert-file-classifier-v2
Base model
distilbert/distilbert-base-uncased