metadata
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
- NousResearch/Hermes-2-Pro-Mistral-7B
library_name: transformers
tags:
- mergekit
- merge
license: mit
language:
- en
metrics:
- bleu
- code_eval
- accuracy
pipeline_tag: text-generation
LeroyDyer/Mixtral_BaseModel
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the linear merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
models:
- model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
weight: 1.0
- model: NousResearch/Hermes-2-Pro-Mistral-7B
parameters:
weight: 0.3
merge_method: linear
dtype: float16
import transformers
import torch
from transformers import AutoTokenizer, MixtralForCausalLM
device = "cuda" # the device to load the model onto
model = "{{ username }}/{{ model_name }}"
imodel = MixtralForCausalLM.from_pretrained(model)
tokenizer = AutoTokenizer.from_pretrained(model)
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = imodel.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]