distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6501
- Accuracy: 0.87
- Precision: 0.8803
- Recall: 0.87
- F1: 0.8627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
2.1743 | 1.0 | 113 | 2.0604 | 0.38 | 0.5273 | 0.38 | 0.3101 |
1.6179 | 2.0 | 226 | 1.4299 | 0.62 | 0.6136 | 0.62 | 0.5877 |
1.0981 | 3.0 | 339 | 1.0223 | 0.79 | 0.8516 | 0.79 | 0.7669 |
0.9785 | 4.0 | 452 | 0.8722 | 0.71 | 0.7748 | 0.71 | 0.6733 |
0.8834 | 5.0 | 565 | 0.8363 | 0.76 | 0.7691 | 0.76 | 0.7449 |
0.4936 | 6.0 | 678 | 0.6241 | 0.82 | 0.8313 | 0.82 | 0.8193 |
0.2772 | 7.0 | 791 | 0.5648 | 0.85 | 0.8623 | 0.85 | 0.8459 |
0.1213 | 8.0 | 904 | 0.6919 | 0.81 | 0.8429 | 0.81 | 0.7997 |
0.0958 | 9.0 | 1017 | 0.5527 | 0.86 | 0.8682 | 0.86 | 0.8541 |
0.0194 | 10.0 | 1130 | 0.6840 | 0.85 | 0.8645 | 0.85 | 0.8420 |
0.0151 | 11.0 | 1243 | 0.6214 | 0.86 | 0.8642 | 0.86 | 0.8542 |
0.1239 | 12.0 | 1356 | 0.6501 | 0.87 | 0.8803 | 0.87 | 0.8627 |
0.0049 | 13.0 | 1469 | 0.6651 | 0.87 | 0.8803 | 0.87 | 0.8627 |
0.0043 | 14.0 | 1582 | 0.7188 | 0.87 | 0.8803 | 0.87 | 0.8627 |
0.0035 | 15.0 | 1695 | 0.6808 | 0.87 | 0.8803 | 0.87 | 0.8627 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 17
Model tree for Leotrim/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubertDataset used to train Leotrim/distilhubert-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.870
- Precision on GTZANself-reported0.880
- Recall on GTZANself-reported0.870
- F1 on GTZANself-reported0.863