Edit model card

Visualize in Weights & Biases

ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3715
  • Accuracy: 0.93
  • Precision: 0.9386
  • Recall: 0.93
  • F1: 0.9311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8552 1.0 57 0.5962 0.83 0.8693 0.83 0.8207
0.448 2.0 114 0.5167 0.85 0.8736 0.85 0.8534
0.1634 3.0 171 0.5433 0.86 0.8780 0.86 0.8570
0.1673 4.0 228 0.4743 0.88 0.8836 0.88 0.8769
0.0065 5.0 285 0.4956 0.91 0.9212 0.91 0.9060
0.0279 6.0 342 0.5635 0.89 0.8971 0.89 0.8879
0.104 7.0 399 0.6799 0.86 0.8832 0.86 0.8564
0.001 8.0 456 0.4927 0.91 0.9246 0.91 0.9109
0.0002 9.0 513 0.3899 0.92 0.9245 0.92 0.9187
0.0002 10.0 570 0.3715 0.93 0.9386 0.93 0.9311
0.0002 11.0 627 0.4695 0.92 0.9245 0.92 0.9180
0.0001 12.0 684 0.4150 0.93 0.9370 0.93 0.9291
0.0468 13.0 741 0.4483 0.92 0.9294 0.92 0.9182
0.0001 14.0 798 0.3852 0.93 0.9334 0.93 0.9288

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for Leotrim/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

Finetuned
(89)
this model

Dataset used to train Leotrim/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

Evaluation results