new version: LarkAI/codet5p-770m_nl2sql_oig
use oig-sql dataset and support more complex sql parse
How to Use
import torch
from transformers import AutoTokenizer, BartForConditionalGeneration
device = torch.device('cuda:0')
tokenizer = AutoTokenizer.from_pretrained("LarkAI/bart_large_nl2sql")
model = BartForConditionalGeneration.from_pretrained("LarkAI/bart_large_nl2sql").to(device)
text = "question: get people name with age less 25 table: id, name, age"
inputs = tokenizer([text], max_length=1024, return_tensors="pt")
output_ids = model.generate(inputs["input_ids"].to(device), num_beams=self.beams, max_length=128, min_length=8)
response_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# SELECT name FROM table WHERE age < 25
reference: juierror/flan-t5-text2sql-with-schema - fix this discussion
How to Train
Quick start: https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/README.md
- Downloads last month
- 65
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.