metadata
license: mit
tags:
- decompile
- binary
1. Introduction of LLM4Decompile
LLM4Decompile aims to decompile x86 assembly instructions into C. The newly released V1.5 series are trained with a larger dataset (15B tokens) and a maximum token length of 4,096, with remarkable performance (up to 100% improvement) compared to the previous model.
- Github Repository: LLM4Decompile
2. Evaluation Results
Model/Benchmark | HumanEval-Decompile | ExeBench | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Optimization Level | O0 | O1 | O2 | O3 | AVG | O0 | O1 | O2 | O3 | AVG |
DeepSeek-Coder-6.7B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0000 |
GPT-4o | 0.3049 | 0.1159 | 0.1037 | 0.1159 | 0.1601 | 0.0443 | 0.0328 | 0.0397 | 0.0343 | 0.0378 |
LLM4Decompile-End-1.3B | 0.4720 | 0.2061 | 0.2122 | 0.2024 | 0.2732 | 0.1786 | 0.1362 | 0.1320 | 0.1328 | 0.1449 |
LLM4Decompile-End-6.7B | 0.6805 | 0.3951 | 0.3671 | 0.3720 | 0.4537 | 0.2289 | 0.1660 | 0.1618 | 0.1625 | 0.1798 |
LLM4Decompile-End-33B | 0.5168 | 0.2956 | 0.2815 | 0.2675 | 0.3404 | 0.1886 | 0.1465 | 0.1396 | 0.1411 | 0.1540 |
3. How to Use
Here is an example of how to use our model (Revised for V1.5). Note: Replace func0 with the function name you want to decompile.
Preprocessing: Compile the C code into binary, and disassemble the binary into assembly instructions.
import subprocess
import os
OPT = ["O0", "O1", "O2", "O3"]
fileName = 'samples/sample' #'path/to/file'
for opt_state in OPT:
output_file = fileName +'_' + opt_state
input_file = fileName+'.c'
compile_command = f'gcc -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux
subprocess.run(compile_command, shell=True, check=True)
compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
subprocess.run(compile_command, shell=True, check=True)
input_asm = ''
with open(output_file+'.s') as f:#asm file
asm= f.read()
if '<'+'func0'+'>:' not in asm: #IMPORTANT replace func0 with the function name
raise ValueError("compile fails")
asm = '<'+'func0'+'>:' + asm.split('<'+'func0'+'>:')[-1].split('\n\n')[0] #IMPORTANT replace func0 with the function name
asm_clean = ""
asm_sp = asm.split("\n")
for tmp in asm_sp:
if len(tmp.split("\t"))<3 and '00' in tmp:
continue
idx = min(
len(tmp.split("\t")) - 1, 2
)
tmp_asm = "\t".join(tmp.split("\t")[idx:]) # remove the binary code
tmp_asm = tmp_asm.split("#")[0].strip() # remove the comments
asm_clean += tmp_asm + "\n"
input_asm = asm_clean.strip()
before = f"# This is the assembly code:\n"#prompt
after = "\n# What is the source code?\n"#prompt
input_asm_prompt = before+input_asm.strip()+after
with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
f.write(input_asm_prompt)
Decompilation: Use LLM4Decompile to translate the assembly instructions into C:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_path = 'LLM4Binary/llm4decompile-6.7b-v1.5' # V1.5 Model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
with open(fileName +'_' + OPT[0] +'.asm','r') as f:#optimization level O0
asm_func = f.read()
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=4000)
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
with open(fileName +'.c','r') as f:#original file
func = f.read()
print(f'original function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions
print(f'decompiled function:\n{c_func_decompile}')
4. License
This code repository is licensed under the MIT License.
5. Contact
If you have any questions, please raise an issue.